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Abstract 

Typically, explanation/interpretation of observed light scattering and absorption 
properties of marine particles is based on assuming a spherical shape and homogeneous 
composition. Although this approach has been fruitful, the next logical step in modeling 
marine particles is to abandon the normally-employed spherical approximation and use 
more realistic approximations to their shape. The advent of computer codes capable of 
handling more complex shapes, and the increased computational speeds now available, 
suggest that particle modeling employing simple non-spherical shapes, e.g., disks, rods, 
etc., could become routine. This report describes research by the author that focuses on 
the influence of shape on the inherent optical properties (IOPs) of marine particles. 

Summary 

A. Modeling backscattering of E. huxlevi coccoliths 

Much of this work was motivated by a desire to build a physical model of coccoliths 
detached from the coccolithophored E. huxleyi. The purpose of the model was to see how 
well it, when coupled with a light scattering code capable of handling such complex 
shapes, could reproduce the observed spectral backscattering of detached coccoliths 
[Gordon and Du, 2001].   The spectral backscattering coefficient is central to the remote 
sensing of natural waters in the visible, as the water-leaving radiance at a given 
wavelength is proportional to (bb/a), where bb is the backscattering coefficient and a is 
the absorption coefficient of the water and its constituents [Gordon and Morel, 1983]. An 
example of a detached coccolith is provided in the figure below. 



In the figure above, the diameter of the disks is ~ 3 urn, and the thickness of each plate is 
~ 50 -100 nm, and the material is calcite. The structures resembling spokes of a wheel 
are nearly periodic, but not exactly periodic. 

In an earlier work I examined the influence of small-scale periodic structures on 
the backscattering of disk-like particles. The principal result of that work was that when 
the scale of the periodicity was > A/4 (where A is the wavelength of the light in the water) 
the backscattering was significantly enhanced over that for smaller scaled periodicities. 
Here, we build on the earlier work by examining the backscattering of similar particles 
with small-scale aperiodic structures. The aperiodic structure was formed by randomly 
perturbing a periodic structure. Although the backscattering cross section Obb for 
individual realizations of an aperiodic disk can differ significantly from that of its 
periodic counterpart, averaging over several realizations brings the two into confluence, 
unless the aperiodicity is too large. The computations provided in Appendix 1 suggest 
that using disks with perfectly periodic (as opposed to quasi-periodic) fine structure for 
modeling the backscattering of detached coccoliths from E. huxleyi is justified. 

In earlier work [Gordon, 2006] I showed that the curvature of the disk-like plates 
is likely to make only a negligible contribution to their spectral backscattering. Thus. I 
modeled detached coccoliths as a set of two parallel disks with periodic angular sectors 
joined by a hollow cylinder. Appendix 2 describes in detail the parameters of the model 
and the comparison between the model-coccolith's light scattering properties and the 
experimentally-determined spectral backscattering of detached coccoliths. Briefly, we 
used in-situ radiance/irradiance profiles to retrieve profiles of the spectral backscattering 
coefficient for all particles in an E. huxleyi coccolithophore bloom off the coast of 
Plymouth, UK. At high detached coccolith concentrations the spectra of backscattering 
all showed a minimum near ~ 550 to 600 nm. Using flow cytometry estimates of the 
detached coccolith concentration, and assuming all of the backscattering (over and above 
the backscattering by the water itself) was due to detached coccoliths, we determined the 
upper limit of the backscattering cross section (abb) of individual coccoliths to be 0.123 ± 
0.039 umVcoccolith at 500 nm. The physical model of a detached coccoliths (described 
above) was combined with the discrete dipole approximation to light scattering [Draine. 
1988; Draine and Flatau, 1994] to compute the average backscattering cross section in 
random orientation. The result was abb = 0.092 urn2 at 500 nm, with the computed abb 
displaying a spectral shape similar to the measurements. When abb was computed on a 
per mole of calcite, rather than a per coccolith basis, it agreed reasonably well with that 
determined for acid-labile backscattering at 632 nm averaged over several species of 
cultured calcifying algae. Intact coccolithophore cells were taken into account by arguing 
that coccoliths attached to coccolithophore cells (forming a "coccosphere") backscatter in 
a manner similar to free coccoliths in random orientation. Estimating the number of 
coccoliths per coccosphere and using the observed number of coccolithophore cells 
resulted is an apparent backscattering cross section at 500 nm of 0.114 ± 0.013 
um2/coccolith, in satisfactory agreement with the measured backscattering. 

B. Light scattering by cylinders 

Success with modeling scattering by E. huxleyi suggested more questions regarding the 
scattering of particles having more complex shapes. Of particular interest to me was the 



scattering by particles showing extreme deviation from spheres, e.g., cylinders with large 
aspect ratios. This shape resembles that of long-chain phytoplankton. How do their 
scattering and absorption properties depend on the length, diameter, refractive index and 
internal structure of the cylinders? How do they depend on orientation? How do they 
compare to the scattering and absorption by spheres containing the same volume of 
material and absorbing pigment? 

A principal result of the study (detailed in Appendix 3) is that the extinction, 
absorption, and scattering efficiencies, and the backscattering probability of randomly 
oriented, homogeneous and structured, cylinders become nearly independent of the aspect 
ratio (AR) when AR > ~ 3-5, for refractive indices characteristic of marine particles 
(organic and inorganic). This applies to cylinders with diameters in the range 0.25 to 1.5 
urn when illuminated with visible light (wavelength, 400-700 nm). Some long-chain 
phytoplankton, e.g., Prochlorotrix hollandica, fall in this size range. A limited number 
of computations for prolate spheroids suggest that the observations apply equally well to 
particles with this shape. This should simplify the inclusion of ^-distributions in the 
characterization of scattering by marine particles. 

A second, and important result, was obtained from our simulation of the use of the 
equal-volume-sphere assumption in the analysis of extinction and absorption coefficient 
data for cylindrically-shaped particles obtained along with assumed measurements of 
particle volume to obtain the particle refractive index [Bricaud and Morel, 1986]. It was 
found that when this equal-volume-sphere assumption was used to try to estimate the 
complex refractive index of cylindrically shaped particles, the absorption index 
(imaginary part of the complex refractive index) could be determined with reasonable 
accuracy, i.e., ~ ± 20%, when the real part (mr) was low. but mr is usually 
underestimated. This is important as the absorption index of many species of 
phytoplankton have been estimated in this manner [Jonasz and Fournier, 2007]. When m, 
is high, e.g., 1.20, the method fails completely. For the low index case, using the index 
retrieved through the equal-volume-sphere assumption, and computing backscattering 
cross section ofci for the equal-volume sphere, can lead to an underestimation 
(<7^w' > allph)) of cylinder backscattering by a significant factor, largely because of the 
inaccuracy in the estimated value of mr; however, if the correct value of the refractive 
index is known, the error is significantly decreased. For the high-index case (for which 
the equal-volume-sphere analysis fails), given the correct value of the refractive index, 
the equal-volume sphere backscatters more than the cylinder, i.e.,  o^° < er^f".  Thus, 
prediction of ahh by this method for low index particles could account for some of the 
"missing" backscattering suggested for marine particles [Stramski et al., 2004]; however, 
when the correct index is used in the computations, the underestimation is greatly 
reduced or eliminated completely. 

C. Observations regarding Rayleigh-Gans scattering 

In earlier work [Gordon, 2006], it was discovered that the simple Rayleigh-Gans 
approximation (RGA) to scattering and backscattering of a thin disk compared favorably 
to the "exact" discrete dipole approximation (DDA). I was curious to see how well this 
approximation worked for particles of more complex shape, e.g., model coccoliths 
[Gordon and Du, 2001] or thin disks with small-scale periodic structure [Gordon, 2007]. 



It was found (details in Appendix 4) that as long as the thickness of the individual disks 
is approximately 20% of the wavelength (or less), the RGA agrees reasonably well 
quantitatively with the DDA even for disks with diameters much greater than the 
wavelength. Thus, the comparisons showed that the RGA is sufficiently accurate to be 
useful as a quantitative tool for exploring the backscattering features of disk-like particles 
with complex structure. It was used to show that, at least in lowest order, the neglect of 
birefringence on modeling the backscattering of detached coccoliths from E. huxleyi, 
would lead to error < about ± 10% in the computed backscattering. 
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with aperiodic angular tine structure 
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Abstract: Recent computations of the backscattering cross section (oj,) of 
randomly-oriented disk-like particles (refractive index, 1.20) with small- 
scale periodic angular internal structure, have been repeated for similarly 
sized particles, but with the periodic structure replaced by an aperiodic 
structure. The latter is formed by randomly perturbing a periodic structure. 
Although (Tt, for individual realizations of an aperiodic disk can differ 
significantly from that of its periodic counterpart, averaging over several 
realizations brings the two into confluence, unless the aperiodicity is too 
large. These computations suggest that using disks with perfectly periodic 
(as opposed to quasi-periodic) fine structure for modeling the 
backscattering of detached coccoliths from E. huxleyi is justified. 
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1. Introduction 

Interpretation of the light backscattered out of natural waters requires understanding the 
backscattering properties of their constituents [1]. However, the backscattering coefficient of 
marine particles is arguably the poorest known of the inherent optical properties of natural 
waters [2], and much effort is being focused on remedying this situation. The backscattering 
properties of marine particles are most-often modeled as homogeneous spheres using Mie 
theory. The advent of computer codes capable of handling more complex shapes [3], and the 
increased computational speeds now available, suggest that particle modeling employing 
simple non-spherical shapes, e.g., disks, rods, etc., will become routine. For example, Gordon 
and Du [4] used a two-disk model to try to reproduce the backscattering by coccoliths 
detached from E. huxleyi, which has a well-defined shape (resembling a disk or two roughly 
parallel disks) and a known composition (Calcite, refractive index relative to water ~ 1.20). 
(See Ref. 5 for scanning electron micrographs of E. huxleyi coccoliths.) However, E. huxleyi 

#89267 - $15.00 USD    Received 31 Oct 2007; revised 20 Nov 2007; accepted 20 Nov 2007; published 27 Nov 2007 

(C) 2007 OSA 10 December 2007 / Vol. 15, No. 25 / OPTICS EXPRESS  16424 



in fact has a rather complex fine structure that might influence backscattering and should be 
addressed. I tried to examine this in an earlier paper [5], in which I computed the 
backscattering of light from thin micrometer-sized disks with periodic angular fine structure 
using the discrete-dipole approximation [6, 7]. The periodic fine structure was achieved by 
dividing the disk into equal-angle sectors of angle Aa = 2n/2", and removing the dipoles from 
alternate sectors. In that study the diameter of the disks ranged from 1.50 to 2.75 |im and the 
thickness from 0.05 to 0.15 urn. The values used for n were 4, 5, 6, and 7, providing 
pinwheel-looking objects (Fig. 1) with 8, 16, 32, and 64 vanes, respectively. The principal 
result of the study was that when the scale of the periodicity, s (defined to be the length of an 
open or closed sector measured along the circumference of the disk), was < A/4, where A is 
the wavelength of the light in the medium (water) the backscattering was found to be nearly 
identical to that of a homogeneous disk possessing a reduced refractive index. In contrast, 
significant increases in backscattering were observed when the scale of the periodicity was 
greater than A/4, reaching a maximum when the scale becomes ~ A/2 [8]. However images of 
individual coccoliths [5] suggests that their "angular periodic" structure is not precisely 
periodic. This raises the question: how much does this aperiodicity influence the 
backscattering, or alternatively, how large must the deviation from periodic be in order to 
significantly influence the backscattering? I examine this question here by comparing the 
backscattering cross section of pinwheels with precisely periodic structure with that for 
pinwheels in which random variations in the angle Aa of individual sectors are introduced. 

2. Model of an aperiodic pinwheel 

The aperiodic pinwheel is formed by a perturbation of the purely periodic pinwheel effected 
in the following manner. First, the disk is divided into purely periodic sectors, the angular 
boundaries of which are designated by the 2" angles aP. The individual boundary angles are 
then perturbed to a/ according to 

2K 

where 0 < e < 1 is a constant and -1/2 < p < 1/2 is a random number with a uniform 
probability density. Then, the material of the disk is removed from ever other sector, yielding 
a pinwheel with a quasi-periodic structure. Four realizations (each based on a difference 
sequence of pseudorandom numbers) of such pinwheels for n = 5 are provided in Fig. 1 for e 
= 0.5 and 1.0. Defining 2} to be the standard deviation in the angle a,, we find Z} = 12 ;f Aa = 
0.3f Aa, where Aa = 2nl2". Likewise defining Z&. to be the standard deviation of the 
removed (or occupied) sector angles, ZM = 6~Vl£Aa ~ 0.4£Aa. Thus, for e= 0.5 and 1.0, the 
relative standard deviation in angle of the removed (or occupied) sectors is 20 and 40%, 
respectively. I examined two aperiodic pinwheels. The first has a diameter (D) of 1.50 \im, a 
thickness (?) of 0.15 urn, and n = S (Fig. 1). The second has D = 2.75 um, / = 0.05 urn, and n 
= 6. The larger disk is similar in size to the distal shield of individual E. huxleyi coccoliths 
[5J. 

This method of creating aperiodic pinwheels does not yield structures with the same 
volume (mass) as the associated periodic pinwheel. The volumes of the four realizations of 
aperiodic pinwheels studied here are provided in Table 1. The individual realizations are 
labeled by the one minus the position in a string of pseudorandom numbers where the 
sampling for/?begins. Thus, for realization 0000 the sampling begins with the first number, 
for realization 1000 it 
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Fig. 1. The individual rows provide four realizations of the aperiodic pinwheels for n = 5 and 
various values of £ Periodic pinwheels are shown in the first column. 

begins with the 1001* number, etc. The variation of the volume for a given e can be as much 
as 25% for the smaller (D = 1.5 urn, n = 5) and 7% for the larger (D = 2.75 urn, n = 6) 
pinwheels. The reduction in dispersion from the smaller to the larger is due to the increase in 
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n, which doubles the number of sectors, increasing the probability that the individual 
realizations have a volume closer to the mean. 

3. Operation of the discrete-dipole scattering code 

The scattering computations were carried out using the discrete-dipole approximation (DDA) 
[6, 7]. The accuracy of the DDA for randomly oriented particles is governed by two issues: 
(1) employing a sufficient number of dipoles to solve the electromagnetic scattering problem 
for a given orientation; and (2) employing a sufficient number of orientations for performing 
the orientational average. A measure of the number of dipoles is related to d, the spacing 
between the dipoles. One wants d to be substantially smaller than the wavelength. 

Table 1. The volume (urn1) of the two aperiodic pinwheels examined. The associated volumes 
for the periodic pinwheel (£• 0) are 0.1325 urn' and 0.1485 urn1 for the 1.5 and 2.75 (im 
diameter pinwheels, respectively. D is the diameter and l is the thickness of the associated disk. 

D= 1.50|im,r = 0.15um,« = 5 D = 2.75 urn, t = 0.05 urn, n = 6 
Realization Realization 

e 0000 1000 2000 3000 0000 1000 2000 3000 
0.5 0.1221 0.1359 0.1319 0.1389 - - - - 
1.0 0.1119 0.1400 0.1285 0.1459 0.1383 0.1490 0.1472 0.1470 

The smaller d, the more dipoles are required to fill the volume of the particle. A convenient 
measure of the spacing in regard to the wavelength is \m\kd, where m is the refractive index 
and k = 2K/A. The orientation of a disk-like object is specified by three angles: 6 the angle 
the axis of the disk makes with the incident beam, <f>, the azimuth of the axis relative to a 
laboratory-fixed plane containing the incident beam, and /?, the angle of rotation around the 
axis required to place the disk in a specified orientation given 6 and <p. In general, for an 
object with no rotational symmetry, e.g., an aperiodic pinwheel, 0° < 8 < 180°, 0° < <j> < 360° 
and 0° < P < 360° ; however, the high symmetry of a uniform disk reduces these to 0° < 6 < 
90°, 0° < <j> < 180°, and requires only one value of J3, e.g., ft = 0. For periodic pinwheels (f = 
0) the angle /} is required, however, its range need only be enough to completely cover one 
open sector and one adjacent occupied sector. The DDA code performs orientational 
averaging by computing the scattering at discrete angles equally spaced in <p and /?, while the 
angle 6 is divided in uniform increments of cosf? . An important consideration in the 
averaging is that the computation time is roughly proportional to the number of angles (No x 
NfXNp) used in the averaging. 

Gordon and Du [8] showed that for a homogeneous disk with D = 2.7 ujn using -5000 
orientations (Ng = 51, N+ = 99, Np = 1) for the orientational average, the error in the 
backscattering cross section (O/,) was of the order of 5% for \m\kd< 0.5, and decreased rapidly 
for smaller values of \m\kd. In the present work, I have always used enough dipoles to keep 
\m\kd < 0.5 (and often < 0.4) and a number of orientations that would provide approximately 
the same averaging accuracy as the uniform disk with D = 2.7 (im. For the periodic pinwheels 
I used Ne = 51, N# = 99 and Np = 4. The four ft increments were equally spaced over one open 
sector and an adjacent occupied sector. Because of the symmetry, this would be equivalent to 
choosing Np= 128 and 0° < ft < 360°. For the aperiodic pinwheels (with e- 1), I used Ng = 
101, A^ = 99 and Np = 9. These latter orientations were chosen by extensive testing in which I 
examined the differential scattering cross section for scattering angles 0 > 90°. The region 
120° < 0 <180°, the phase functions of periodic and aperiodic pinwheels (Z) = 2.75 um) are 
highly oscillatory in 0, and for the above choice of the orientational averaging, the observed 
oscillations in the periodic and aperiodic cases were similar,   facilitating a fair comparison 
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between the two. Actually, ah appears to become stable with smaller values of Ng, A^and Np, 
where the orientationally-averaged phase function becomes more strongly dependent on the 
number of orientations, providing confidence that a sufficient number of orientations have 
been used. In the final analysis, the choice of the number of orientations must be balanced 
against computational time required. 

4. Results of the computations 

Figures 2 and 3 provide the results of the backscattering cross section computations for the 
smaller and larger pinwheels, respectively. Also shown for comparison is the result for a 
homogeneous disk of the same size (D and /). Note that the homogeneous disk has twice the 
volume (mass) of the periodic pinwheel (e = 0) and approximately twice the volume of the 
aperiodic pinwheels (e > 0). 

Consider first the periodic pinwheels. For these, s = X1A occurs when t/X = 0.255 for the 
smaller and 0.093 for the larger pinwheel. For t/X larger than these values, the backscattering 
increases rapidly with decreasing X and then undergoes a series of maxima and minima with 
progressively increasing backscattering at each maximum. The backscattering at the maxima 
for the smaller pinwheel is, in magnitude, approximately that at the maxima for the 
homogeneous disk (twice the volume or mass of the pinwheel). For the larger pinwheel, it is 
approximately 75% of the maxima for a uniform disk. These pinwheel maxima are the result 
of interference of the fields scattered by the individual vanes of the pinwheel as they occur in 
the Rayleigh-Gans approximation as well   (although only the first maximum occurs at the 

Fig. 2. The backscattering cross section of four realizations of the aperiodic pinwheels shown 
in Fig. 1 (D = 1.5 |xm) compared with that for a periodic pinwheel and for a homogeneous disk 
of the same size. The left panel is for e= 0.5 and the right panel is for e= 1.0. 

same position [8]). In the case of the smaller aperiodic pinwheel, when e = 0.5 its 
backscattering closely follows the periodic pinwheel, with the dispersion of backscattering 
reaching 20% at the smallest wavelength, while when £ = 1.0 there is more significant 
deviation from the periodic case, and the dispersion is somewhat larger. Recalling that 2"^ * 
0.4f Act = 0. 4x2ne 12", we note that the smaller pinwheel with E = 0.5 (n = 5) has the same 
value of Eaa as the larger pinwheel with e = 1.0 (n = 6). Interestingly, Figs. 2 (Left Panel) 
and 3 show that the behavior of ah with decreasing X up to its first minimum are similar in the 
two cases (e = 0.5, n = 5 and £= 1.0, n = 6): there are only minor deviations from the periodic 
pinwheels; and there is small dispersion between the various realizations of the aperiodic 
pinwheels. In contrast, when   e is increased from 0.5 to 1.0 for the smaller pinwheel, the 
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dispersion increases, and ab near its first maximum (/ IX = 0.4) shows a significant decrease 
from the e = 0 and 0.5 cases. This behavior would be expected under the hypothesis that the 
maxima in the periodic case results from constructive interference of light interacting 
with the individual vanes of the pinwheel  - when the spacing and angular size of the vanes 

0.03 

0.02 

0.01 

e =0 
Real OO00 
Real 1000 
Real 2000 
Real 3000 
Uniform Disk 

0 ! 0.2 03 OA ot, 

Fig. 3.  The backscattering cross section of four realizations of the aperiodic pinwheels with e 
= 1.0, D = 2.75 u.m and n = 6 compared with that for the associated periodic pinwheel. 

becomes random the constructive interference is reduced. 
Close examination of Fig. 2 at the smaller wavelengths reveals that ab for the several 

realizations is ordered with increasing volume, i.e., the realization with the smallest oj, has the 
smallest volume, etc. However, with increasing X (decreasing t/X) the order can reverse, 
particularly near the first maximum near t/X = 0.4. Thus, there is no way to try to reduce the 
dispersion throughout the whole wavelength range by normalizing for volume differences. In 
the Rayleigh-Gans domain, t/X<0.2 [8], for particles with identical shape, the volume effect 
on aj, is proportional to the square of the volume. This would explain the envelope of the 
variation near t/X = 0.2 in Fig. 2. 

Although the volume effect cannot be removed, it is important to understand that real 
biological particles (e.g., E huxleyi coccoliths) would display similar variations in volume. In 
fact, if pinwheels were to represent real biological particles, samples would be expected to 
consist of a number of realizations of their aperiodicity. In this regard, the average ah 

(denoted by {ab)) is more important than that for any given realization. Figure 4 compares the 
(oi,) for the four realizations of the aperiodicity examined here with the associated periodic 
pinwheel. It clearly shows that the main difference between (oi) for the small periodic and 
aperiodic pinwheels (left panel) occurs near the maxima in the backscattering, and that near 
the first maximum (but not the second) the difference increases as deviation from periodicity 
increases (i.e., as e increases). Considering the large departures from periodicity for the e= 1 
realizations in Fig. 1, it is remarkable that, when averaged over realizations, their {ab) is so 
close to that of periodic pinwheels (e = 0). As suggested in Fig. 3, Fig. 4 (right panel) shows 
that the (Oi) for the large aperiodic pinwheel is very close to its periodic counterpart. 
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Fig. 4. The backscattering cross section (oj) of an equal-number mixture of the four 
realizations of the aperiodic pinwheels compared with that for a periodic pinwheel (£=0): left 
panel D= 1.5 u_m, / = 0.15 urn and n = 5; right panel   D = 2.75 (im. r = 0.05 u.mandn = 6. 

5. Discussion 

With only two examples of periodic pinwheels and their aperiodic counterparts, it is difficult 
to make concrete conclusions regarding the effects of aperiodicity. However, it does appear 
that some general conclusions are possible. First, Figs. 2 and 3 show that in the transition 
from the periodic to the aperiodic pinwheel ab changes much less than compared to the 
transition from uniform disk to periodic pinwheel. Second, the dispersion in ah among 
realizations of the aperiodic pinwheels is associated with the dispersion in Aa (or s), which 
increases with increasing e. Third, the aperiodic (crft) will usually be somewhat smaller than 
the periodic ab, at least near the position of the first (long-wave) maximum, and this decrease 
increases with increasing aperiodicity (e). 

Finally, I examined the deviation in the angular spacing of the "spokes" in the distal 
shield of the individual coccoliths provided in Fig. 2 of reference [8]. For this particular 
coccolith, E^JAa - 0.27, and there were 40 open angular sectors. This coccolith shield is 
similar in size and shape to the larger (2.75 urn) pinwheel {n = 6, 32 open sectors) examined 
here. The computations for the larger pinwheel show that, for the purpose of computing 
backscattering, the periodic pinwheel is a good approximation to aperiodic pinwheel as long 
as £jJAa < 0.4 (e < 1). This suggests that replacing the aperiodic fine structure of the distal 
shield of E. huxleyi coccoliths with a strictly periodic fine structure will not degrade the 
modeling of their backscattering, especially for natural samples containing large numbers of 
coccoliths. 
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We used in situ radiance/irradiance profiles to retrieve profiles of the spectral backscattering coefficient 
for all particles in an E. huxleyi coccolithophore bloom off the coast of Plymouth, UK At high detached 
coccolith concentrations the spectra of backscattering all showed a minimum near ~550 to 600 nm. Using 
flow cytometry estimates of the detached coccolith concentration, and assuming all of the backscattering 
(over and above the backscattering by the water itself) was due to detached coccoliths, we determined 
the upper limit of the backscattering cross section (<T(,) of individual coccoliths to be 0.123 ± 
0.039//m2/coccolith at 500 nm. Physical models of detached coccoliths were then developed and the dis- 
crete dipole approximation was used to compute their average backscattering cross section in random 
orientation. The result was 0.092//m2 at 500 nm, with the computed ob displaying a spectral shape 
similar to the measurements, but with less apparent increase in backscattering toward the red. When 
(ij, is computed on a per mole of calcite, rather than a per coccolith basis, it agreed reasonably well with 
that determined for acid-labile backscattering at 632 nm averaged over several species of cultured 
calcifying algae. Intact coccolithophore cells were taken into account by arguing that coccoliths attached 
to coccolithophore cells (forming a "coccosphere") backscatter in a manner similar to free coccoliths 
in random orientation. Estimating the number of coccoliths per coccosphere and using the observed 
number of coccolithophore cells resulted is an apparent backscattering cross section at 500 nm of 
0.114 ± 0.013/an2/coccolith, in satisfactory agreement with the measured backscattering. © 2009 
Optical Society of America 

OCIS codes:     010.4450, 290.5850, 000.1430, 280.4991. 

1.   Introduction 

Understanding the optical properties of marine par- 
ticles is important in oceanographic studies ranging 
from using light attenuation to determine and moni- 
tor sediment transport [1], to the estimation of the 
energy available for photosynthesis [2] and the effi- 
ciency with which photosynthetic organisms can uti- 
lize the available energy [3], to the interpretation of 
the color of the water as observed from space [4]. In 

0003-6935/09/316059-15$15.00/0 
© 2009 Optical Society of America 

the past, much effort has been expended in modeling 
the absorption and scattering properties of marine 
particles in terms of their chemical and physical 
properties, such as size, pigment composition, refrac- 
tive index, etc. [5—7]. In most studies the particles are 
assumed to be spherically symmetric. The focus of 
this work is modeling the scattering by single marine 
particles: coccoliths detached from the coccolitho- 
phorid Emiliania huxleyi. The goal is to understand 
the extent to which complex particle shape must be 
considered to properly model light scattering by 
marine particles. 
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The fundamental inherent optical properties 
(IOPs) of a suspension of particles are the absorption 
coefficient a and the volume scattering function 
(VSF) /?(©). When a parallel beam of light power P0 

propagates a distance At through the suspension, an 
amount of radiant power APa is lost through absorp- 
tion and an amount A2Ps(0) is removed through 
scattering into a solid angle AO around a direction 
making an angle 0 (the scattering angle) with the 
original direction of propagation. The absorption 
coefficient and the VSF are defined through 

a = l^    and   m-.1*• 
P0 At P0  AHAe (1) 

The total scattering coefficient b relates to the total 
power lost by scattering in all directions: 

b = 
1 AP, 

Po A£ 

n 

2n //?(©) sin 0d0, (2) 

where it has been implicitly assumed that the scat- 
tering is independent of the azimuth angle around 
the beam propagation direction, i.e., if the propaga- 
tion is in the z direction, the power scattered in the 
x direction is the same as that scattered in the y di- 
rection, etc., and requires that if the particles are 
nonspherical they be in random orientation. The 
backscattering coefficient bb relates to the power lost 
through scattering in the angular range rc/2 <, 0 < n: 

In Jtm sin 0d0. (3) 
K/2 

If the particles in the suspension are all identical, 
the total scattering cross section (a) and the back- 
scattering cross section (ab) of an individual particle 
are given by 

b = No   and    bb = Nab, (4) 

where N is the number density (number per unit vo- 
lume) of particles in the suspension. If there are n 
species of particles present, the IOPs are linearly ad- 
ditive over the species, i.e., b = £JLJ &;> e^c- Because 
of its importance in ocean remote sensing (the solar 
radiation backscattered out of the water toward a re- 
mote sensor is ex bb/a), our focus will be mostly on bb 

(actually ab). 
The IOPs of marine particles are most often mod- 

eled assuming that they are homogeneous spheres. 
Although this approach has been fruitful for several 
decades, the next logical step in modeling marine- 
particle optics is to abandon the spherical assump- 
tion and use more realistic approximations to their 
shape. Clavano et al. [8] provide an excellent discus- 
sion of scattering by nonspherical particles with re- 
fractive indices similar to those of marine particles. 

They focused on spheroids and found significant dif- 
ferences between the scattering by equal-volume 
spheroids and spheres, particularly in the back- 
scattering cross sections. 

Microscopic examination of marine particles re- 
veals inhomogeneous particles of various shapes, 
with the larger particles often having shapes with ex- 
treme aspect ratios, e.g., long, thin cylinders, etc., 
and a very inhomogeneous structure. The particles 
that are of organic origin also contain pigments that 
are absorbing in the visible. Separating the effects of 
shape from those of absorption and inhomogeneity in 
such complex particles presents a very difficult pro- 
blem. Thus, to test the viability of modeling light 
scattering by marine particles using more realistic 
approximations to their shape, it is important to find 
a particle for which light absorption is unimportant, 
so the influence of shape is expected to be the domi- 
nant effect in modeling its light scattering. Such 
particles are the detached coccoliths from the cocco- 
lithophorid E. huxleyi. This particle is ideal as a case 
study for shape effects in marine light-scattering 
modeling for a variety of reasons. First, it is homoge- 
neous and its composition is known (calcite), provid- 
ing its refractive index. Second, its gross shape is 
known (it resembles a disk or two parallel disks), 
although, it does have complex, quasi-periodic inter- 
nal structure at the sub-visible-wavelength scale 
that must be addressed. Next, although coccolitho- 
phore cells absorb light, the detached coccoliths are 
nonabsorbing, so the problem of unraveling absorp- 
tion effects from shape effects is circumvented. Fi- 
nally, E. huxleyi is important in biogeochemical pro- 
cesses as it is ubiquitous in the world oceans and con- 
tributes significantly to the ballasting of marine 
particulate matter, hence the vertical transport of 
both organic and inorganic carbon from the surface 
waters to the sediments. In addition, when a large 
E. huxleyi bloom occurs and large numbers of cocco- 
liths are detached from the parent cells, it is easily 
observed from space and therefore amenable to ocean 
color remote sensing techniques as a means of esti- 
mating the concentration and eventually its global 
impact on the carbon cycle [9]. Because of the impor- 
tance of backscattering in remote sensing (and the 
absence of coccolith absorption), the backscattering 
of detached coccoliths is arguably their most impor- 
tant optical property. 

It is now possible to efficiently compute the absorp- 
tion and scattering properties of homogeneous parti- 
cles of many simple shapes using the T-matrix 
method [10]. A less efficient method of computation, 
the discrete-dipole approximation (DDA), can be 
used to compute the absorption and scattering prop- 
erties of particles of any shape [11]; however, the 
computations are time consuming. Gordon and Du 
[12] used the DDA to model the scattering by detach 
coccoliths using simple disklike shapes. They found 
that the spectral shape of backscattering by detached 
coccoliths in the blue—green could be reasonably well 
reproduced using a shape consisting of two parallel 
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disks (diameter ~2.75/<m and thickness 0.05/an) se- 
parated by 0.3 ftm, but the absolute magnitude of the 
backscattering cross section of an individual cocco- 
lith was significantly smaller than observed (factor 
of 2 to 3). Further modeling required more complete 
measurement of the backscattering properties of 
detached coccoliths. The difficulty in obtaining such 
data is the fact that coccolith blooms, although some- 
what frequent in certain areas, are ephemeral in nat- 
ure, making it difficult to plan a field program for 
sampling, even with the timely availability of satel- 
lite imagery. 

A unique dataset for a better understanding of the 
optical properties of detached coccoliths presents it- 
self through the measurements carried out by Smyth 
et al. [13] in a coccolithophore bloom off the coast of 
Plymouth, England during July 1999. In this field ex- 
periment, detailed in-water optical measurements 
were carried out in an intense bloom. In addition, 
imagery from the ocean color sensor SeaWiFS [14] 
is available for the same bloom [15]. In this report, 
these data are used to extend the light-scattering 
modeling of detached coccoliths started by Gordon 
and Du [12]. 

The structure of the paper is as follows. First, we 
describe the data set acquired by Smyth et al. [13]. 
Second, we validate the inverse radiative transfer 
method for deriving the absorption and backscatter- 
ing coefficient profiles (to be used with coccolith pro- 
files) from profiles of the downwelling irradiance and 
the upwelling radiance within an artificial cocco- 
lithophore bloom (a turbid chalk suspension). Third, 
we apply the inversion algorithm to the Plymouth 
bloom and derive spectra of the absorption coefficient 
(a) and the backscattering coefficient (bb) as a func- 
tion of the concentration of detached coccoliths. 
Fourth, we present the absorption and backscatter- 
ing coefficients retrieved from the SeaWiFS imagery 
at the same locations as a demonstration of the fide- 
lity of the in-water inversions. Fifth, we develop an 
advanced physical model of a coccolith and use the 
DDA to deduce its scattering properties. Sixth, we at- 
tempt to model the influence of intact coccolitho- 
phore cells on the apparent backscattering cross 
section of detached coccoliths. Finally, we compare 
the modeled spectral backscattering cross section 
to the measurements and discuss the results. 

2.   The Data Set 

The in-water data used in this paper are those re- 
ported by Smyth et al. [13]. Briefly, they include pro- 
files of the upwelling radiance (propagating toward 
the zenith), LU(A), and the downwelling irradiance, 
Ed(A), obtained at A = 412, 443, 490, 510, 555, 620, 
and 685 nm using radiometers engineered by Satlan- 
tic following SeaWiFS protocols [16]. The concentra- 
tion of coccolithophore cells and detached coccoliths 
were determined from water samples in two ways: 
direct manual counting of samples preserved in buf- 
fered formalin; and flow cytometry of fresh (live) 
samples. The detached coccolith counts in the pre- 

served samples differed by approximately a factor 
of two from the flow cytometrically derived values. 
This is believed to be due to the fact that cells pre- 
served in buffered formalin for manual counting 
were observed to shed their coccoliths in storage. 
(This difference between preserved and fresh sam- 
ples is discussed more thoroughly in Section 4.) The 
optics of the blooms was dominated by detached coc- 
coliths with as many as 235 coccoliths observed for 
each intact coccolithophore cell. Embedded within 
parts of the bloom were red patches of Gymnodinium 
mikimotoi that were apparent from SeaWiFS ima- 
gery recorded on the same day, observed by other 
mariners (and one of us, T Smyth, from a cruise a 
week earlier), but none were apparent at the stations 
described here. 

The Station locations are labeled 1-4 in order of 
increasing coccolith concentration. Their locations 
can be found on Fig. 1 of Gordon et al. [15] or Smyth 
et al. [13]. Station 1 was believed to be out of the 
bloom (and usable for background optical properties); 
however the in-situ samples revealed that coccoliths 
were present, albeit at a concentration that was an 
order of magnitude lower near the surface than the 
other stations. Because the LU(A) sensor saturated 
near the surface, due to the intense backscattering, 
complete depth profiles are not available. At 555 nm 
the usable LU{A) measurements start at 3, 3, and 4m 
for Station 2, 3, and 4, respectively [13]. 

In addition to the in-water data, imagery from the 
ocean color scanner SeaWiFS is also available. The 
SeaWiFS overpass was coincident with Station 3. 
Gordon et al. [15] used this SeaWiFS image to esti- 
mate the coccolith concentration in the bloom in 
question. (It should be noted that the remote and 
in-situ coccolith concentrations in Gordon et al. [15] 
are roughly double the counts stated in Smyth et al. 
[13] because manual counts of buffered formalin- 
preserved samples were used in [15], as well as for 
the empirical relationship between backscattering 
and number density.) 

3.   Validation of the Inversion Algorithm for 
Backscattering 

The spectral backscattering coefficient is to be re- 
trieved from the field data using the inversion algo- 
rithm developed by Gordon and Boynton [17]. The 
Gordon and Boynton algorithm uses vertical profiles 
of Lu and Ed to estimate vertical profiles of a and bb. 
Briefly, trial profiles of a(z) and bb{z), where z is 
depth, are introduced into the radiative transfer 
equation (RTE), which is solved to provide estimates 
of Lu(z) and Ed(z). These estimates are compared 
with their measured counterparts, and based on the 
differences, the a and bb profiles are adjusted and re- 
introduced into the RTE, which is again solved for 
Lu(z) and Ed(z). This process continues iteratively 
until a satisfactory agreement between the mea- 
sured and calculated Lu(z) and Ed(z) is obtained, 
and the resulting a(z) and bb(z) are the "retrieved" 
quantities. As Gordon [18] has shown that Lu(z) 
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and Ed(z) are insensitive to b, the resulting values 
of b(z) are discarded; however, the bb(z) profile is 
retained. 

The solution of the RTE between each iteration, re- 
quires a scattering phase function for the medium. 
Here, we use the phase function measured by Petzold 
[19,20]. Gordon and Boynton [17] show, using simu- 
lations in which synthetic irradiance-radiance data 
were created with forward radiative transfer using 
a phase function with backscattering probability 
equal to 0.036, that the depth-averaged error in the 
inversion-retrieved backscattering coefficient when 
the correct phase function was used in the retrieval 
was < 2% while, if an incorrect phase function (one 
with a backscattering probability equal to 0.011) 
was used, the error was usually <8%. 

In the adjustment of the trial bb(z) from one itera- 
tion of the algorithm to the next, a relationship 
between bb(z)/a(z), Lu(z)/Ed(z), and the depth deri- 
vative of Lu(z)/Ed(z) is used to relate bb{z)/a{z) at 
depth z to that at greater depths, and accounts for 
the influence of vertical structure on the IOPs. Al- 
though newer approximations are available to ac- 
count for the influence of vertical structure on 
Lu(z)/Ed(z) [21,22], the Gordon and Boynton algo- 
rithm employs the earlier method of Gordon and 
Clark [23]. The validation of the algorithm described 
below will show that use of the older Gordon and 
Clark method does not lead to excessive error except, 
possibility in the depth range over which backscat- 
tering is changing rapidly with depth. 

In contrast to oligotrophic and mesotrophic waters 
[24], for which the inversion error in bb(z) compared 
to in-situ measurements is ~8%, the inversion algo- 
rithm has not been validated for the case of highly- 
scattering waters. To effect a validation, we used 
spectral backscattering and absorption data ob- 
tained in conjunction with vertical profiles of LU(X) 
and Ed(X) obtained during the Chalk-Ex experi- 
ment [25]. In Chalk-Ex, a turbid patch resembling 
a coccolithophore bloom, was created at 39.79 °Nx 
67.77 °W, on 15 November 2001, by mixing 2/<m par- 
ticles of ground Cretaceous chalk (calcite) into 
surface seawater. The strong correlation between 
particle backscattering and chalk mass allowed the 
fate of the chalk to be tracked spatially over time 
scales of several days. Figure 1 shows the resulting 
patch, which began as a 3 km2 feature (which quan- 
titatively and qualitatively resembled a coccolitho- 
phore bloom in terms of its color and quantity of 
reflected light). Note, due to small-scale physical pro- 
cesses, the feature was not horizontally homoge- 
neous but showed heterogeneities consistent with 
Langmuir circulation [25]. For the data presented 
here, from the initial stages of the deployment, the 
chalk feature was confined to approximately the 
top 15 m of the water column. Measurements of 
LU(X) and Ed(k) were obtained with a Satlantic Ocean 
Color Profiler (OPC) at seven visible wavelengths. 
Optical profiles were made ±2 hours of local appar- 
ent noon. The OCP instrument was slightly nega- 

Fig. 1. (Color online) Chalk-Ex campaign: The synthetic "bloom" 
resulting from the deployment of finely ground chalk particles 
(mean diameter, 2//m). Note the horizontal inhomogeneity. 

tively buoyant and was deployed by hand, behind 
the ship, (oriented such that the Sun was aft of the 
ship, which was steaming at ~25 cm s_1). This orien- 
tation avoided ship shadow. Once the OCP trailed 
100 m aft of the ship, the cable to the OCP was re- 
leased so the instrument could sink vertically over 
the top 100 m at a velocity of 1ms"1. The measure- 
ment of bb(k) was made at two wavelengths using a 
HobiLabs Hydroscat-II (470 and 676 nm) calibrated 
according to the manufacturer. Although the parti- 
cles in this artifical bloom are neither the same shape 
nor size of detached coccoliths (they are somewhat 
smaller and irregular in shape), they do provide what 
is needed to validate the inversion algorithm: a high 
concentration of nonabsorbing particles. 

The LU(A) and Ed{k) Chalk-Ex data were intro- 
duced into the Gordon and Boynton [17] inversion 
code and vertical profiles of a(2) and bb(A) were re- 
trieved. This code version could be used with con- 
fidence because both Rayleigh and Raman scattering 
by the water itself are negligible compared to the 
scattering by the chalk particles; however, in the 
before-dispersal case the low backscattering may re- 
quire additional consideration. Figures 2 and 3 com- 
pare the measured 66(470nm) with the retrieved 
6<,(490nm) both before and after the chalk dispersal. 
In the chalk-free retrieval, the retrieved fcfc(490nm) 
appears to be about 10-20% lower than the mea- 
sured 6;,(470nm). Part of this difference is likely 
due to the fact that the backscattering of water is sig- 
nificant and the Boynton and Gordon [26] version of 
the algorithm would be more appropriate for this 
case. The significant difference seen just near the 
surface is likely due to the influence of surface waves 
on the irradiance measurements. The after-dispersal 
results (Fig. 3) show roughly an order of magnitude 
more backscattering in a layer extending from the 
surface to about 15 m. The difference between the up 
and down casts reflects the horizontal inhomogeneity 
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Fig. 2. Measured backscattering coefficient at 470 nm at the 
Chalk-Ex site (given in the text) before dispersal of the chalk 
(points) and retrieved backscattering at 490 nm using the inver- 
sion algorithm (continuous curve). 

of the chalk patch. The retrieved 6fc(490nm) in the 
high-concentration layer appears to differ from the 
measured bb (470 nm) by about ±25%; however, some 
of this difference is due to the inhomogeneity of the 
patch. These retrievals suggest that the error in 
the retrieved 66(490nm) should be less than ±25% 
in the high-concentration portions of the patch. 

As an additional test of the performance of the 
retrieval algorithm, we examine the retrieved ab- 
sorption coefficients before and after dispersal of 
the chalk. The absorption coefficients before and 
after dispersal should be the same because the chalk 
was nonabsorbing. Comparison of the average re- 
trieved spectral absorption coefficients in the region 
of the high concentration of the chalk before and after 
dispersal is provided in Fig. 4. Clearly, there is no 
significant difference in the quality of the perfor- 
mance of the algorithm in retrieving the absorption 
coefficient induced by the addition of the chalk to 
the water. 
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Fig. 3.    Measured backscattering coefficient at 470 nm at the 
Chalk-Ex site after the dispersal of the chalk (points) and retrieved 
backscattering at 490nm using the inversion algorithm (continu- 
ous curve). 

Wavefcnglh (ran) 

Fig. 4.    Retrieved absorption coefficient at the Chalk-Ex site be- 
fore and after dispersal of the chalk over the depth range of high 
concentrations of chalk (top ~20m). 

Based on the Chalk-Ex retrievals, we believe that 
the retrieved backscattering coefficients in the high- 
concentration parts of the coccolithophore blooms we 
examine will be in error by certainly no more than 
±25% and probably substantially less, as coccolitho- 
phore blooms are much more spatially uniform than 
the Chalk-Ex patch. 

4.   Results of the Inversion of Coccolithophore Bloom 
Data 

Here we first provide the examples of the retrieved 
spectra of a(X) and bb(X), then use the SeaWIFS 
imagery to support the validity of the retrievals, 
and finally, estimate the backscattering cross section 
(<rb = bb/NCoccomh, where NCoccolith, is the concentra- 
tion of detached coccoliths in the water). 

A.   Retrieval of a(A) and bb(^) from the In-Water 
Measurements 

The inversion algorithm was applied to the Lu {X) and 
Ed(X) depth profiles to retrieve depth profiles of a(X) 
and bb(X). The retrieved values of a{X)-aw(X) and 
bb(X) at a depth of 5m are provided in Figs. 5 and 6. 
In Fig. 5, the value at 685 nm is omitted because it is 
negative in half the stations. The average absolute 
value ina(685)-ou,(685) is 0.06m"1, while ai(,(685) = 
0.486, which suggests the retrieval error in a(685) 

«0 450 500 JSO (SOU 650 

Wavelength (ran) 

Fig. 5.    Retrieved absorption coefficient minus that of water (au.) 
at the Stations 1-4 in the Plymouth bloom at 5 m depth. 
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Fig. 6.    Retrieved backscattering coefficient at Stations 1-4 in the 
Plymouth bloom at 5 m depth. 

is less than ~ ± 15%. The retrieval error in a at the 
other wavelengths is likely to be about the same. The 
absorption (after removal of that of pure water) was 
found to vary exponentially with wavelength, i.e., 
oc exp[-SA], with S = 0.011 nm"1, suggesting signifi- 
cant absorption by detrital material. At the stations 
at which the detached coccoliths clearly dominate the 
scattering, Fig. 6 shows that the retrieved backscat- 
tering coefficients all have similar spectral shapes, 
i.e., maximum bb in the blue decreasing toward 
the green, a minimum near 550-620 nm, and then in- 
creasing into the red. It clearly is not proportional to 
X to some power (i.e., a "power law") over the entire 
visible spectrum. 

B.   Retrieval of a(443) and bb(443) from SeaWIFS 
Imagery 

As mentioned earlier, SeaWiFS imagery is available 
on the same day for which the in-water data were ob- 
tained. We used a version of the spectral optimiza- 
tion algorithm (SOA) [27] modified for operation in 
Case 2 waters with high backscattering [28,29]. 
Proper operation of this algorithm requires site- 
specific bio-optical parameters; however, in the ab- 
sence of such parameters for the area in question, 
we used the Case 1 water parameters used by Chom- 
ko et al. [27] but with the Case 2 high-backscattering 
modification. The SOA retrieves the concentration of 

Chlorophyll a, the absorption coefficient of detrital 
material (dissolved and particulate) at 443 nm and 
the backscattering coefficient at 443 nm. From the 
retrieved Chlorophyll a, the absorption coefficient 
of phytoplankton is obtained. Thus, the absorption 
coefficient minus that of water at 443 nm, apd, and 
the backscattering coefficient of particles bbp at 
443 nm are obtained from the imagery. Table 1 com- 
pares these retrievals with the associated values ob- 
tained through the in-water radiance/irradiance 
data. The SeaWiFS retrieval at Station 4 is not in- 
cluded because the backscattering coefficient ex- 
ceeded the upper limit allowed in the SOA code 
(bbp = 0.1m"1). When this happens, none of the other 
retrieved parameters are viable. 

Comparison between the inverted- and the Sea- 
WiFS-derived scattering and absorption properties 
at 443 nm suggest that both are dependable, and that 
the retrieved bbp(A) is likely to be uncertain to less 
than the ±25% upper limit to the error suggested 
on the basis of the Chalk-Ex retrievals in Section 3. 

C.   Estimate of the Backscattering Cross Section of 
Detached Coccoliths at 500 nm 

We wish to estimate the backscattering cross section 
of an individual detached coccolith. For a given 
backscattering coefficient bb, this is given by ob= 
bb /-^coccolith. where ATCoccoUth is the number concen- 
tration (number per unit volume) of detached cocco- 
liths, provided in Table 2. As it is critical in 
understanding the accuracy of the resulting ab, we 
first discuss the uncertainties in iVCoccoUth. As men- 
tioned earlier, we use the flow cytometry (FC) mea- 
surements of fresh (unpreserved) samples rather 
than manual counting of samples preserved in buf- 
fered formalin because coccolithophore cells are 
observed to shed coccoliths when stored in this man- 
ner. Several experiments were carried out to esti- 
mate the uncertainty in iVCocco]ith. First, two 
different flow cytometers were used to measure 
iVcoccoiith for the same samples fixed in buffered for- 
malin. The two flow cytometers differed by ~20% 
This is a measure of the uncertainty in the flow cyt- 
ometer methodology used in this paper. Second, the 
FC comparisons (made with the two flow cytometers) 
with manual microscopic counts (taken as the "gold 
standard") of the same samples showed that the 
manual-count concentration was ~1.38x that deter- 
mined by FC. Thus, the FC concentrations are about 

Table 1. Comparison of the SeaWIFS Retrieved Backscattering and Absorption Parameters at 443 nm 
with those Derived from Inversion of the In-Water Radiance/irradiance Data* 

Station 
apdfm'1) 
SeaWiFS 

<V(m 1) 
Inverted 

bbp(m-1) 
SeaWiFS 

bbp(m-1) 
Inverted 

Chi 
a(mg/m3) 
SeaWiFS 

Chi 
a(mg/m3) 

In Situ 

1 
2 
3 

0.207 
0.189 
0.325 

0.148 
0.160 
0.339 

0.0138 
0.0533 
0.0615 

0.0139 
0.0548 
0.0726 

2.003 
2.051 
4.238 

1.375 
1.972 
3.340 

"The "Inverted" values are from a depth of five meters. The SeaWIFS values are derived assuming the constituent concentrations are 
uniform. 
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Table 2.   Coccollth Concentration (Wcocc = wcoccomn in ml'1) and the Ratio ot Coccolith to Coccospheres 

(Ncocc.• Ween. Wce» = WCocco8pfie,8) aa a Function of Depth (z In m) for the Four Stations Examined 

Station 1 Station 2 Station 2 Station 4 

z Wcocc •Ncocc/Wcell Ncocc Ncocc/Wcell Wcocc Wcocc/Wcell -Wcocc Wcocc/WceU 

0 424,921 64 541,007 130 
2 40,524 92 436,037 215 
5 42,138 52 258,898 110 309,152 67 459,848 129 

10 57,990 128 306,134 139 494,196 206 434,959 149 
15 16,371 46 244,986 125 378,991 235 92,060 50 
20 19,243 45 214,669 113 384,170 158 104,427 70 
25 32,263 75 244,864 183 269,391 236 

28% too low. Finally, comparison between the FC con- 
centrations (with two flow cytometers) of fresh (un- 
preserved, live) samples and those preserved in 
buffered formalin showed that the preserved sam- 
ples had approximately twice (1.94x) the number 
of detached coccoliths. Summarizing, these experi- 
ments suggest that (1) the inherent error in our 
FC methodology is ~20%, (2) our FC measurements 
yield concentrations that should be multiplied by 
1.38 to provide those that would be measured by mi- 
croscopic counting of fresh samples, and (3) cocco- 
lithophores in samples that are stored in formalin 
for later counting lose coccoliths, so the resulting coc- 
colith concentrations are too high by approximately a 
factor of two. Thus, in determining ab, we take the 
FC-measured concentrations and multiply them by 
1.38 to get iVCoccouth, the result that would be ob- 
tained for manual microscopic counting of fresh sam- 
ples. We estimate the uncertainty in iVCoccoiith to be 
±20%, and combined with an uncertainty of ±25% 
in bb (but likely significantly less), the uncertainty 
in the final ab will be ~ ± 32%. 

Figure 7 shows ab as a function of iVcoccoiith- Note, 
in this figure 6fc(500) is actually pooled data consist- 
ing of 64(490) and 6fe(510). In preparing this graph, 
data from all stations and all depths at which retrie- 
vals were actually obtained at 490 and 510 nm are 
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Fig. 7. Backscattering at 500 nm divided by the detached cocco- 
lith concentration as a function of the detached coccolith con- 
centration as measured by flow cytometry. This is an estimate 
of ah. Note, lml/m = 106/im2/coccolith, so 100 x 10"9 ml/m = 
0.100 //m2/coccolith. 

included. Since detached coccoliths are not the only 
constituent of the water—there are also coccolitho- 
phore cells, other phytoplankton (e.g., possibly the di- 
noflagellate, G. mikimotoi), as well as detrital 
particles—such a determination will only yield an 
upper limit to the average ab, as it is implicitly as- 
sumed that all of the backscattering is due to de- 
tached coccoliths. As the coccolith concentrations 
increase, detached coccoliths increasingly dominate 
seawater backscattering, thus the estimate of 
fT6(500) becomes better as iVCocco.ith becomes larger. 
This is clearly seen in the figure as the general trend 
is a decreasing rr6(500) as AfCoccoiith increases. 

We can try to compensate for other particles in 
the water by using Station 1 (originally thought to 
be outside the bloom) to estimate the background 
backscatter by other particles. Thus, in Fig. 8 
we have plotted [6fe(500)-66(500).Stationl)]-=- 
[Ncoccoiith-iVcoccoiith(Stationl)]    as    a    function    of 
^Coccolith -Ncoccoiith(Stationl). Averaging the three 
data points with iVCoccolith - iVCoccoiith (Station 1) > 
350,000 per ml, we estimate the upper limit to 
<rfc(500) is approximately 0.123/<m2/coccolith We 
stress that this is the upper limit, because there is 
still a component of the scattering due to intact coc- 
colithophore cells (and possibly other particles) that 
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Fig. 8. Backscattering at 500 nm (minus that at Station 1) di- 
vided by the detached coccolith concentration (minus that at Sta- 
tion 1) as a function of the detached coccolith concentration (minus 
that at Station 1) as measured by flow cytometry. This is 
an estimate of ab. Note, lml/m = 106/<m2/coccolith, so 
100 x 10-9ml/m = 0.100//m2/coccolith. 
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may not be removed by subtracting the background. 
Combining the ±20% error in FC counting and the 
±25% error in 6ft(500), we estimate that the maxi- 
mum error in <T6(500) to be ~ ± 32%, but because 
the uncertainty estimate for bb is likely too large, 
the uncertainty in ab is likely smaller. 

This backscattering cross-section estimate is 
similar to those determined by other investigators 
on natural samples or on laboratory cultures: 
0.1/mi2/coccolith by Balch et al. [30]; 0.135/mi2/ 
coccolith by Balch et al. [31]; and 0.13-0.16/mi2/ 
coccolith by Voss et al. [32]. The ultimate goal of 
the modeling in this paper is to be able to reproduce 
both the spectral shape of ab and its absolute magni- 
tude at 500 nm. 

5.   Physical Model for a Detached Coccolith 

The physical model we used for a detached coccolith 
is a modified "fishing reel" model from Gordon and 
Du [12]. In this model, the coccolith is modeled as 
two parallel disks (the proximal and distal shields) 
joined by a hollow cylinder. The modifications were 
based on the computations presented by Gordon 
[33,34]. 

First, noting that the distal shield or disk (further 
from the cell interior) has a periodic fine structure 
resembling the "spokes" of a wheel, Gordon [33] in- 
vestigated the influence on backscattering of such 
a periodic disklike structure. It was found for disks 
with refractive index similar to calcite, that if the 
scale of the periodicity (arc length of the space be- 
tween the spokes at the rim of the wheel) is greater 
than one-quarter of a wavelength of the light (in the 
medium), the backscattering is significantly en- 
hanced. The distal shield of E. huxleyi coccoliths have 
a periodicity such that the quarter-wave limit could 
be exceeded in the blue to blue-green region of the 
spectrum, which could enhance the backscattering. 

Second, noting that the distal shield of E. huxleyi 
coccoliths is not precisely periodic, Gordon [34] exam- 
ined the influence of aperiodic effects on disklike 
structures and found that, in the range of aperiodi- 
city displayed by the individual coccoliths, the back- 
scattering did not differ significantly from that of 
their perfectly periodic counterparts. 

Third, taking into consideration the possible ef- 
fects of periodicities on backscattering, the distal 
shield is modeled as a periodic pinwheel structure 
[33] with alternating occupied and unoccupied sec- 
tors. The relative refractive index of the distal shield 
is taken to be 1.20. 

Fourth, the proximal shield also has a quasi- 
periodic structure of thin radial slits; however, these 
have a width much less than a quarter of a wave- 
length. Gordon [33] showed that such a periodic 
structure scatters like a solid disk, albeit with an ef- 
fective (reduced) refractive index. Thus, in our model 
coccolith, the proximal shield is modeled as a solid 
disk with a refractive index of 1.19. 

As in Gordon and Du [12] the two disklike struc- 
tures are joined by a hollow cylinder. The resulting 

Fig. 9. Schematic of the model of the position of the individual 
dipoles comprising the body of a detached coccolith. The top two 
disks are the proximal shield. They have a diameter of 3.5/jm. 
The thickness of this disk ranges from 0.04 to 0.06//m. The two 
central "washer-shaped" disks represent the cylinder joining the 
proximal and distal shields. This cylinder has an inner diameter 
of 1.38 ^m and an outer diameter of 1.58//m. The "pinwheel" at the 
bottom represents the distal shield, and is shown here with 10 
"vanes." In the actual coccolith model, the distal shield has 40 
"vanes." The separation between the distal and proximal shields 
is 0.30 to 0.35^m. In the figure, the bottom four objects have a re- 
fractive index of 1.20, while the top two objects have an index of 
1.19. The maximum number of layers (6 are shown here) of dipoles 
in the actual coccolith model is up to 24, corresponding to a layer 
spacing of ~0.02^m. 

structure is similar to the schematic in Fig. 9. The 
individual points in Fig. 9 represent the positions 
of the individual dipoles in the DDA. The two disk- 
like objects have diameters (D) of 3.5/mi. This size 
was chosen based on the mean diameters of E. hux- 
leyi coccoliths given by Young and Ziveri [35]. The 
thickness (t) of the individual disks ranges from 
0.04 to 0.06/mi, as estimated from scanning electron 
microscope (SEM) images of individual coccoliths 
(but unfortunately not from the bloom under consid- 
eration here). The cylinder joining the shields has an 
inner diameter of 1.38 /mi and an outer diameter of 
1.58 /mi. The "pinwheel" at the bottom represents the 
distal shield, and is shown with 10 "vanes." In the 
actual coccolith model, the distal shield has 40 
"vanes." The separation ("gap" or <gap) between the 
distal and proximal shields is 0.30 to 0.35/mi (also 
estimated from SEM images). The volume of the in- 
dividual coccoliths ranges from 0.69 /mi3 (for a gap of 
0.30/mi and a shield thickness of 0.04/mi) to 
0.98/mi3 (for a gap of 0.35/mi and a shield thickness 
of 0.06/mi). These compare favorably with an esti- 
mate of 0.9/mi3 for "normally calcified" coccoliths 
provided by Young and Ziveri [35]. 

Finally, a valid criticism of this model is that the 
gross morphology is that of a disk while the shields 

6066        APPLIED OPTICS / Vol. 48, No. 31 / 1 November 2009 



are actually sections of spheres, i.e., they fit nicely to 
form the spherical coccolithophore (the "cocco- 
sphere"). However, Gordon [33] showed that a section 
of a sphere backscatters in a manner that is nearly 
identical to the tangent disk of the same diameter. 
Thus, we assume the curvature of the disks is un- 
important in the present model. 

It is well known that single crystals of calcite are 
birefringent. Likewise, coccoliths are uniaxial bire- 
fringent structures with the "C axis" (the optical axis) 
radial from the center of the coccolith [36]. We know 
of no highly-accurate light-scattering computer code 
that is presently capable of handling such birefrin- 
gence. However, using the Rayleigh-Gans approxi- 
mation to light scattering, Gordon [37] assessed the 
influence of birefringence on light scattering by disk- 
like structures with a radial optical axis and con- 
cluded that the error in backscattering introduced 
by ignoring birefringence was of the order of 10% or 
less. Since the Rayleigh-Gans approximation has 
been shown to be a reasonable approximation to scat- 
tering by disklike particles in the coccolith size 
range, we conclude that ignoring birefringence will 
lead to backscattering errors of the order of 10% 
or less. 

6.   Scattering and Backscattering of the Model 
Coccoliths 

Computations of the light-scattering properties of 
the model coccoliths were carried out using the dis- 
crete-dipole approximation (DDA) [11,38] DDSCAT 
Version  6.1.   DDSCAT  code  was  run  on  an  80- 

processor cluster using the built-in message passing 
interface (MPI) features. As the scattering from a 
structure as complex as that shown in Fig. 9 is 
strongly dependent on orientation, proper orienta- 
tion averaging is critical to deriving orientationally- 
averaged optical properties. The number of orienta- 
tions that must be averaged to obtain the IOPs for 
randomly oriented particles is dependent on the 
IOP in question. The total scattering cross section re- 
quires the least number and the back scattering 
cross section calculation requires a higher number 
of orientations. Based on extensive testing, for a and 
ab we averaged over approximately 80,000 orienta- 
tions, which, considering the symmetry of the parti- 
cle (with 40 vanes, rotation about the cylinder axis by 
9° returns the particle a position equivalent to its ori- 
ginal position), would correspond to 3,200,000 orien- 
tations for a particle with no symmetry. 

Figure 10 provides the orientationally averaged 
spectral backscattering for the model coccolith. It 
is separated into panels with each panel represent- 
ing a given shield thickness, and one panel providing 
the mean of the nine model coccoliths (the "model 
mean"). The points joined with dashed lines on the 
panel with the model-mean backscattering cross sec- 
tion correspond to the measured spectra normalized 
to 0.085fim2 at 510 nm to approximately match the 
model mean at 500 nm of 0.092/vm2. Note that the 
computed cb spectra for all of the model coccoliths 
have essentially the same shape—a decreasing back- 
scattering from 500 to 600 nm followed by a nearly 
constant backscattering in the near infrared. Only 
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Fig. 10. Backscattering cross section ob of the model coccoliths. The panels clockwise starting from the upper left are for shield diameters 
D = 3.5^m and thicknesses t = 0.04, 0.05, and 0.06//m, with each panel containing three different separations between the proximal and 
distal shields in fim ("Gap"). The fourth panel is the ah averaged over the other three. The dashed lines in the fourth panel correspond to the 
measured spectra normalized to 0.085 /mi2 /coccolith at 510nm. To get ab specific to a mole of calcite (in units m2/mole of calcite) multiply 
the ordinate scale on the lower right panel by 44.2m2/mole, i.e., at 600nm nb = 2.26m2/mole. 
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the spectrum for the smallest £(0.04/mi) coupled with 
the smallest gap (0.30 /mi) shows the opposite trend 
in the visible. Interestingly, as one might expect, 
the averaged spectrum is close to that of the "aver- 
age" model coccolith: t = 0.05//m and gap = 
0.325 /mi. The ab spectra for the model-mean cocco- 
lith agrees well with the retrieved spectra over the 
range 400 nm to about 550 nm; however, in the red 
and infrared the model backscattering is too low. It 
should be noted that when normalized to the calcite 
concentration, rather than the coccolith concentra- 
tion, the average ab at 600 nm (2.26 m2/mole) agrees 
well with the Balch et al. [39] measurements of 
the acid-labile backscattering at 632 nm averaged 
over several species of cultured calcifying algae 
(2.77m2/mole). For completeness, Fig. 11 provides 

the associated backscattering probability, ab = ob/o, 
for each of the model coccoliths and the average ab-r 
the average a. 

For a measure of the influence of the diameter of 
the shields on the scattering properties, we computed 
the optical properties for the "average" model cocco- 
lith (t = 0.05 //m and gap = 0.325 /mi) with the dia- 
meter varied from 2.5 to 4.0//m. The resulting 
spectra for a, ab, ab, and ob/D

2 are presented in 
Fig. 12. The ab spectra show that the increase in 
backscattering with diameter over the range 600 
to 900 nm can be completely explained by the in- 
crease in total scattering a with diameter, while in 
the range 400-600 nm the backscattering increases 
faster with diameter than the total scattering. Also, 

one might expect scattering properties to be propor- 
tional to D2 (i.e., approximately the cross sectional 
area of the particle) as D becomes large or A becomes 
small. The ab/D

2 spectra (Fig. 12, lower-right panel) 
confirm this for D £ 3/mi and A <, 900 nm. Thus, in 
this regime ab oc D2 and Fig. 10 can then be used 
to estimate ab for any D £ 3 //m 

Finally, it is interesting to note that the spectra in 
the upper-left panel of Fig. 12 can be fit well to the 
formula a = kk~n with n = 2 and k a constant. This is 
generally the case for disklike objects as was found 
by Gordon and Du [12]. 

7.   Influence of Intact Cells on the Estimated <rb for 
Coccoliths 

The estimates of ab for coccoliths in Subsection 4.C 
were obviously influenced by the backscattering from 
intact coccolithophore cells. Although the detached 
coccoliths outnumber the intact cells by factors of 
45 to 235 (Table 2) in the flow cytometer measure- 
ments, the intact cells (from which coccoliths have 
yet to detach, henceforth referred to as "cocco- 
spheres") can make a contribution by virtue of the 
fact that they backscatter much more strongly than 
coccoliths, i.e., by a factor of the order of 40 [32], In 
this Section we attempt to estimate the effect of coc- 
cospheres on the retrieved ab. This is accomplished 
by (1) estimating the backscattering by coccospheres, 
and (2) assessing the influence of their presence on 
the apparent value of tfb(500) for detached coccoliths. 
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A.   Light-Scattering Model of a Coccosphere 

There is no feasible method available today of mod- 
eling a coccolithophore cell with any precision. How- 
ever, we believe that it is reasonable to expect that 
coccoliths on the surface of coccolithophore cells 
backscatter in a manner similar to free detached coc- 
coliths in random orientation. We arrive at this ex- 
pectation through the following reasoning. 

A single layer of coccoliths (each resembling two 
parallel disks of thickness t separated by a gap of 
thickness tgap) packed around a spherical core ap- 
proaches a spherical structure consisting of an outer 
spherical shell of thickness t, a gap of thickness tgap, 
and a concentric inner shell of thickness t. Although 
there are no freely available computer codes for deal- 
ing with multishell objects with spherical symmetry, 
there are approximations with which one can com- 
pute their backscattering to within a few tens of per- 
cent. Gordon [37] has shown that computations of the 
backscattering of thin disklike structures in random 
orientation using the Rayleigh-Gans approximation 
(RGA) compare favorably with those computed using 
the DDA, as long as the thickness of the disk divided 
by the wavelength of the light (in water) was less 
than 0.2. Further, it was shown that if two such disks 
meeting this criterion are arranged in a parallel 
structure (similar to a coccolith) the RGA provides 
an excellent approximation to the DDA backscatter- 
ing. This suggests that the backscattering by a single 
spherical shell may also be reasonably well computed 
using the RGA. To test this hypothesis we compared 
the exact backscattering by a spherical shell (com- 
puted using the code supplied in Bohren and Huff- 
man [40]) with that computed using the RGA. 
Over the visible spectrum, for a spherical shell of 

radius 4/<m, thickness 0.05^m, and refractive index 
1.20, the ratio (exact-fffc) -^ (RGA-rrfc) varied between 
1.3 and 1.4 with an average of 1.36, suggesting that 
the RGA underestimates the backscattering by 
~35% in this case. The fact that the RGA also works 
well for parallel disks in random orientation [37] sug- 
gests that it should also work well for concentric 
spherical shells. We computed the backscattering 
cross section of concentric spherical shells, each of 
thickness t = 0.05//m, separated by a gap tgap = 
0.325//m (similar to the "average" coccolith model's 
shield thickness and gap thickness), for overall outer 
radii of 1.5 to 5.0^m using the RGA. The results are 
provided in Fig. 13. We note that these spectra have a 

Concentric Spherical Shells: / = 0.05 \im. /gUp = 0.325 um 

—•— R = 1.5 Mm 

5 • 
O     R m 2.0 Mm 

-V- R' 2.5 Mm 

—V     R= VO Mm 

4  - 

t 

—»- R = S.5 Mm 

—Q  • R m 4.0 Mill 

-•    * - 4.5 Mm 
c 
3-   3 - 

-O- ff = 5.0Mm 

2 - 

1  - 

0 • 

^4 
)00 400 5.(10 (00 700 800 900 I OIK) 

Wavelength dim} 

Fig. 13.    Backscattering cross section of a particle consisting of 
two concentric spherical shells as a function of the overall particle 
radius (K). 

1 November 2009 / Vol. 48, No. 31 / APPLIED OPTICS        6069 



shape similar to the spectra of our model coccoliths, 
i.e., they display a minimum backscattering near 
600 run. When the spectra are normalized at 600 nm 
(Fig. 14) they are all similar, which suggests that the 
shell thickness and the gap between the shells, and 
not the overall size, determines the spectral shape. 
In addition, we computed the spectral backscattering 
in the RGA by two parallel disks (disk diameter of 
3.50/mi, disk thickness of 0.05/mi, and disk sep- 
aration of 0.325 /mi) in random orientation. This 
spectrum (normalized at 600 nm) is also plotted in 
Fig. 14. Note the similarity of the spectral variation 
of backscattering between the disk and the sphere, 
suggesting that the backscattering of concentric 
spherical shells can be modeled as a collection of 
some number of independent parallel disks with 
the same thickness and separation, in random 
orientation. 

Examination of SEM images of E. huxleyi cocco- 
spheres suggests that their diameter is approxi- 
mately twice the diameter of the distal shield of the 
coccolith (see images in [33]). Since most of our com- 
putations were for coccoliths with 3.5 /mi shields, we 
took the overall diameter of the coccosphere to be 
7.0//m. If we imagine the two concentric shells to be 
a layer of coccoliths, then when the outer radius of 
the outer shell is 3.5 /mi and the diameter of the in- 
dividual coccoliths is also 3.5 /mi, the area of approxi- 
mately 12 coccoliths equals the area of the sphere on 
which they reside (radius 3.075//m for the "average" 
coccolith model). In reality it would require more 
than 12 coccoliths because they would have to over- 
lap to cover the entire sphere. If we assume maxi- 
mum overlap, i.e., the coccolith shields are packed 
in contact with the central core structure, then it 
would take ~20 coccoliths to cover the sphere. At 
500 nm, ab computed for the "average" model cocco- 
lith in random orientation is 0.086/mi2, while Fig. 13 
provides 1.28//m2 for the concentric shells. The ratio 

Concentric Spherical Shells: / = 0.05 um, /gap = 0.325 nm 
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Fig. 14.    Same as Fig. 13, except the results are normalized at 
600 nm, and the backscattering of two parallel disks (disk dia- 
meter of 3.50//m, disk thickness of 0.05 fim, and disk separation 
of 0.325/<m) in random orientation has been included as well. 

(concentric shells-^) -=• (coccolith-07,) is ~14, in rea- 
sonable agreement with the two estimates of the 
number of coccoliths required for coverage. (Actually, 
the Fig. 13 estimate of ab is likely to be low by 
30^i0%, so the estimated number is likely to be high- 
er than 14 by 30-40%.). Thus, we henceforth assume 
that the coccoliths on a coccosphere scatter indepen- 
dently and in the same manner as detached cocco- 
liths in random orientation. 

SEM imagery also suggests that the coccosphere 
consists of at most three layers, but more typically 
one or two layers of coccoliths. Using our average coc- 
colith model (disk diameter of 3.50/mi, disk thickness 
of 0.05 /mi, and disk separation of 0.325 /mi), the first 
layer would be covering a sphere of radius 3.075 /mi, 
the second a sphere of radius 2.65 /mi. and the third a 
radius of 2.225/mi, having areas of approximately 
119, 88, and 62/mi2, respectively. These are in the 
ratio 1.00:0.74:0.52, so the number of coccoliths re- 
quired per coccosphere would be 12-20 (for 1 layer), 
21-35 (for 2 layers), and 27-45 (for 3 layers) depend- 
ing on packing. The average between the smallest 
(12) and the largest (45) is 29 coccoliths per 
coccosphere. For 29 coccoliths per coccosphere, 
ab (coccosphere) = 29 coccoliths/coccosphere x 
0.086 /mi2 or ~2.5/mi2/coccosphere with an overall 
range of ~1 to 4//m2/coccosphere at 500 nm, depend- 
ing packing and the number of layers. 

B.   Apparent <% for Coccoliths when Coccosphere 
Backscattering is Included 

We now compute the apparent ab at 500 nm in a 
mixture of coccoliths and coccospheres. If NCoCcoiith 
and ATCoccogphere are the number concentration of coc- 
coliths and coccospheres, respectively, then when coc- 
cospheres contribute to the backscattering the 
apparent coccolith backscattering is given by 

ab (apparent) = ob (coccolith) 

.  •'"Coccosphere       / • •. 
H—JT= ab (coccosphere). 

-"Coccolith 
(5) 

Using 07, (coccolith) =0.092 /mi2 /coccolith (the 
model-mean) and ob (coccosphere) = 2.5 /mi2/ 
coccosphere at 500 nm, we find an average 
ab (apparent) = 0.114 ±0.013/mi2 /coccolith at 500 nm 
for Stations 2—4 (high coccolith concentrations). 
Comparison of ab (apparent) and the retrieved upper 
limit for tr6(500) from Section 4 of 0.123/mi2/ 
coccolith with an estimated error of ±32% (but likely 
less) reveals excellent agreement between the two, 
with coccospheres contributing about 20% of the ob- 
served backscattering. 

8.   Discussion 

The modeling discussed above has the virtue that it 
reproduces reasonably well the spectral variation of 
backscattering of particles in the Plymouth cocco- 
lithophore bloom. In addition, the apparent back- 
scattering  cross  section  at  500 nm  of coccoliths 
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when coccospheres are included (0.114 ± 0.013 nm2 / 
coccolith) compares favorably with the measured va- 
lue (0.123 ± 0.039/mi2/coccolith). One goal of the 
present work is to ascertain the complexity of 
the model required to understand the back- 
scattering of detached coccoliths. To that end, we 
simplified the model by replacing the pinwheel used 
for the distal shield (Fig. 9) by a solid disk and by 
using a refractive index of 1.20 for the entire model 
structure. These changes increased ab(coccolith) 
at 500nm from 0.092 to 0.114/mi2/coccolith, and 
<r6 (apparent) to 0.143 ± 0.016/mi2/coccolith, and al- 
though the agreement with ab(apparent) is poorer, it 
is still within the uncertainty estimates. Thus, to bet- 
ter constrain the modeling, backscattering data with 
less uncertainty are needed. 

One way to obtain such data is through experimen- 
tation with laboratory cultures. However, coccolitho- 
phores have been grown before in batch culture and 
coccoliths harvested using flow cytometry for bulk 
scattering measurements. The ^(632) within multi- 
ple clones of a single species, E. huxleyi, was shown to 
have a coefficient of variation of ±30% ([39], see 
their Table 4). Presumably, this variability was from 
changes in the morphology of the coccoliths as 
growth rates changed within the batch cultures. A 
much more laborious, but precise, way to control 
growth and calcification would be to grow them using 
nutrient-limited chemostats. The optical scattering 
of coccoliths has not been examined in steady-state 
growth to our knowledge, but also might show signif- 
icant variability as a function of growth rate. This is 
because the ratio of calcification to photosynthesis 
increases as growth rate increases [41]. That is, coc- 
colithophore cells could either increase their calcifi- 
cation rate by producing more coccoliths (which 
presumably would not change the coccolith scatter- 
ing cross section), or increase coccolith diameter or 
thickness (which would change their particle-specific 
scattering cross section). This will have to await 
more experimentation. 

It remains to consider the possible contamination 
from other phytoplankton (G mikimotoi), i.e., can 
G. mikimotoi backscatter enough to make a signifi- 
cant contribution to ^(apparent) at 500nm? To 
try to get an estimate of the possible contribution 
of G. mikimotoi, we considered backscattering by a 
sphere of 20/mi diameter (Nakamura et al. [42] give 
the "equivalent spherical diameter" of G. mikimotoi 
to be ~19/mi). Using Mie theory [43], computation of 
<rfe(500) yielded 0.28, 0.98, 3.7, and 6.0/mi2/cell, for 
assumed refractive indices of 1.03, 1.04, 1.05, 
and 1.06, respectively. Noting that nonspherical par- 
ticles can backscatter significantly more than 
equal-volume spheres [8], we assume rrfc(500) * 
10/mi2/cell, i.e., almost double the largest Mie esti- 
mate of <r6(500), as an order-of-magnitude estimate 
for G. mikimotoi. Then, in order for these cells to con- 
tribute 0.01/mi2/coccolith to ab(apparent) for cocco- 
liths, NG,mikimotoi/Ncoccolith would be required to be of 
the order of ~10 3, so the G. mikimotoi concentration 

would have to be about 1/20 to 1/4 of the coccosphere 
concentration. It is hard to imagine that cells at this 
concentration would not be detected. The coarseness 
of this computation notwithstanding, it seems un- 
likely that inclusion of G. mikimotoi cells in the 
mix of particles could make a significant contribution 
to the backscattering, as the required concentration 
would be quite detectable but their presence was not 
apparent at the stations used in this study. 

Finally, we have assumed throughout that the de- 
tached coccolith particles are in random orientation. 
If the particles have a preferred orientation the influ- 
ence on backscattering as measured in the inversions 
could be large because of the way that <xj (apparent) 
was obtained. If the particles have even a slight ten- 
dency to align with coccolith plates oriented predomi- 
nantly horizontally, the measured backscattering 
would be significantly greater because the upwelling 
light in the water would be preferentially backscat- 
tered from the flat shields. However, if the particles 
are embedded in a turbulent flow, in which the tur- 
bulence is isotropic, one would expect they would 
have random orientation. In addition, if they were 
initially aligned by some manner, Brownian motion 
would randomize the alignment with a relaxation 
time of ~ls. The only sources of alignment that 
we can envisage would be a shear flow [44] or non- 
isotropic turbulence. As far as we know, there are 
no data concerning particle orientation in the surface 
waters of the ocean, so we have no basis on which to 
assume any orientation other than random. 

9.   Summary and Concluding Remarks 

We used in situ radiance/irradiance profiles to 
estimate profiles of the sum of the spectral backscat- 
tering coefficient for all particles in an E. huxleyi coc- 
colithophore bloom off the coast of Plymouth, UK 
The inversion algorithm for retrieval of bh was vali- 
dated through comparison with direct measure- 
ments in the Chalk-Ex experiment. The validation 
exercise suggested the error in the retrieved bb 

should be less than 25%. The retrieved spectra of 
backscattering all showed a minimum near ~550 
to 600 nm. Given flow cytometry estimates of the de- 
tached coccolith concentration, and assuming all of 
the backscattering (over and above the backscatter- 
ing of the water itself) was due to detached coccoliths, 
we determined the backscattering cross section ((rb) 
of a coccolith to be 0.123 ± 0.039//m2/coccolith at 
500 nm. We then developed a physical model of a coc- 
colith and computed its backscattering cross section 
(in random orientation) to be 0.092/mi2/coccolith at 
500 nm. The computed ab also displayed a spectral 
shape similar to the measurements, but with less ap- 
parent increase in the red. However, on a "per mole of 
CaC03" rather than "per coccolith" basis, <r6(600) 
agreed reasonably well with that determined by 
Balch et al. [39] for the acid-labile backscattering 
at 632 nm averaged over several species of cultured 
calcifying algae (Fig. 10). 
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Knowing that there were also intact coccolitho- 
phore cells that have a much larger backscattering 
cross section than free coccoliths, and given their 
concentrations, we tried to account for their effect 
on the derived coccolith cross section. Arguing that 
coccoliths attached to coccospheres backscatter in a 
manner similar to free coccoliths, estimating the 
number of coccoliths per coccosphere, and using 
the observed number of coccospheres, we found 
<T6(apparent) to be 0.114 ± 0.013 fim2/coccolith at 
500 nm in good agreement with the measured 0.123± 
0.039/mi2/coccolith. 

Although the inversion method yielded rather 
large uncertainty on the backscattering coefficient 
as validated in the Chalk-Ex experiment, we believe 
that the uncertainty is significantly smaller than 
25% [24], and the major source of error may be 
estimating the coccolith concentrations. The major 
weakness of this study is the fact that neither the 
precise nature (size) of the detached coccoliths 
nor the coccospheres were determined through 
SEM measurements. Thus, we had to assume the di- 
mensions of an average coccolith as provided by 
Young and Ziveri [35]. A second weakness is our 
inability to precisely model the backscattering by 
coccospheres. 
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Abstract: Typically, explanation/interpretation of observed light scattering 
and absorption properties of marine particles is based on assuming a 
spherical shape and homogeneous composition. We examine the influence 
of shape and homogeneity by comparing the optics of randomly-oriented 
cylindrically-shaped particles with those of equal-volume spheres, in 
particular the influence of aspect ratio (AR = length/diameter) on extinction 
and backscattering. Our principal finding is that the when AR > -3-5 and 
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the backscattering probability are close to those of an infinite cylinder. In 
addition, we show the spherical-based interpretation of extinction and 
absorption can lead to large error in predicted backscattering. 
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1. Introduction 

The inherent optical properties (IOPs) of particles suspended in natural waters are of interest 
in several areas of marine science: sediment properties and transport [1]; marine 
photosynthesis [2]; and remote sensing of ocean color [3]). The IOPs include the absorption 
coefficient (a), the scattering coefficient (/>), the extinction coefficient c = a + b, the volume 
scattering function /?(©) (© is the scattering angle), and the backscattering coefficient (bh). 
The extinction coefficient is particularly important in sediment studies, the spectral absorption 
coefficient in photosynthesis, and the backscattering coefficient in remote sensing (water- 
leaving radiance <x biJa). 

For many years, the interpretation of measurements of the IOPs of particles suspended in 
natural waters (in particular the estimation of their refractive indices) has usually employed 
the assumption that the particles are spherically symmetric [4]. The development of 
electromagnetic scattering codes for computing the scattering from particles with more 
complex shapes has stimulated interest in the influence of particle shape on the IOPs [5-7]. 
Gordon and Du [5] and Gordon et al. [8] showed that a complex shape was required to 
reproduce the spectral variation and absolute magnitude of the backscattering cross section of 
coccoliths detached from the coccolithophore E. huxleyi. Gordon [9,10] showed that small- 
scale structures (size < A/4) had little influence on the backscattering of disk-like particles. 
Clavano et al. [7] carried out a comprehensive study of scattering by spheroid-shaped particles 
(ellipses of revolution) in random orientation with refractive indices characteristic of particles 
suspended in water. They showed that the computed IOPs for such particles deviated 
significantly from those computed for spheres having the same volume and refractive index. 
The deviations increased as the aspect ratio of the spheroids increased. They also reported 
data suggesting that the most frequent aspect ratio of living marine particles was ~5. 

In this work, I consider in detail the dependence of IOPs on aspect ratio. Rather than 
spheroids, I use homogeneous and structured cylinders as the study particle, but make 
comparisons with similarly-sized spheroids. I consider refractive indices that are within the 
range expected for marine particles. I also assume throughout that the particles are in random 
orientation; however, if the particles have a preferred orientation the influence on the IOPs 
will be large, particularly on backscattering. Generally, particles embedded in an isotropic 
turbulent flow, will have a random orientation. In contrast, if they are embedded in non- 
isotropic turbulence [11] or in a shear flow, there will be a tendency for the particles to align 
with the flow. This tendency will be particularly important in aligning particles with large 
aspect ratios, e.g., diatom chains [12]. In the absence of data concerning particle orientation in 
the natural waters, we have no basis on which to assume any orientation other than random. 
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As the principal focus is to study the influence of aspect ratio on the IOPs, the particle 
diameters are of necessity limited by the storage requirements of the computer code used in 
the computations. The largest particle that could be examined has a volume-equivalent 
spherical diameter of-3.6 urn, and an aspect ratio of 10. 

The principal result of the study is that the extinction, scattering, and absorption 
efficiencies, as well as the scattering phase function, fi(®)/b, and the backscattering 
probability, bjb, become nearly independent of the aspect ratio (length/diameter) when it 
becomes greater than -3-5. This implies that the IOPs of longer cylindrical particles can be 
inferred from those of particles with aspect ratios in this range. 

I begin by reviewing scattering and absorption concepts for finite and infinite cylinders. 
Next I provide computed absorption and extinction efficiencies and backscattering probability 
of homogeneous and structured cylinders as a function of their diameter, refractive index, and 
aspect ratio. These are then compared to those of equal-volume spheres, showing that the 
spherical assumption is particularly poor at even moderate aspect ratios. Finally, 1 briefly 
compare scattering by cylinders and spheroids. 

2. Review of light scattering and absorption concepts 

2.1. Finite cylinders 

For a cylinder (or any particle) of finite extent, the differential scattering cross section, 
c/<x6(0,O) is given by 

(5,(0,*))     •r(@,Q>)dA 
dah(&,4» = - ^ , (1) 

(U. 
where (SA(0,O)J     is the time-averaged Poynting vector (irradiance) of the scattered field at 

V IAvg 

the position f in the direction (0,O), r(0,O) is a unit vector from the scattering center to the 

detector of area dA with it's normal parallel to r(0,<t>), and (Slnc)      is the time averaged 

Poynting vector of the incident field. The angle 0 is the angle between the direction of the 
incident radiation and   r(0,O), and 0 is the angle between the scattering plane (plane 

containing the incident direction and r) and a laboratory-fixed reference plane containing the 
incident direction. Using the fact that the solid angle subtended by the detector at the particle 
is dQ = dAJr1, where r is the distance from the detector to the particle, this gives the 

conventional definition of the differential scattering cross section: 

da    " |(U,| 
Far from the scattering center the scattered fields are x 1/r, so the scattered Poynting vector is 
ozr/r2, and the differential cross section is independent of r. The total scattering cross 
section is defined by 

%    Y da (0 Q>) 
*> =   J    J dab{^°\v^d®d<t>, (3) 

the backscattering cross section by 
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-\  J 
and the scattering phase function by 

p(e,<j>)« 

^(Q,<t>) 
</0 

sin@d®d<t>. 

1  </gt(0,<&) 
(7,        </Q 

(4) 

(5) 

Now, if we average over all orientations of the particle (to represent a collection of identical, 
randomly-oriented, particles) these relationships are replaced by 

(6) 
dCl 

^(e,*)\  2 (w°>-***>L, 
(*4 

«>=o e=o </Q    / 

T !(*£»)—« 
a>=o e=*/2 

(/>(©, 4>)) = 
l   ld<rb(®,<b) 

M ^n 

(7) 

(8) 

(9) 

where (^) = ^XJN, with the index ;' referencing one of N appropriately chosen 

orientations of the particle. Note that the resulting (/>(©,O)) is actually independent of <I>. 

The volume scattering function, /?(©), and the scattering coefficient, b, of a collection of 

such (randomly-oriented) particles are given by 

ld<Tb(®,Q)\ 
/?(©) = «- and   b = n(crh), (10) 

\      dQ. 

where n is the number of such particles per unit volume. The backscattering coefficient is 

bh=2K  |   /?(0)sin0J@, (ID 

and the backscattering probability is bh =bjb = (crhli)/(ah). The scattering efficiency Qh is 

defined by   Qh =(crb)/{Ap),where   {Ap)   is the orientationally-averaged projected area 

(shadow) of the particle. 
By computing the net flow of energy into a large sphere surrounding the particle, one can 

determine the power absorbed by the particle and thus the absorption cross section aa [13]: 

<|£(S,(0,<1>))     •r(©,<D) dA 

<r.. =• 

P-L. 
(12) 
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where (s,(@,<P)) is the time-averaged Poynting vector of the total field on the sphere: 

incident plus scattered. Similarly, performing the orientational averaging, 

(cra) = ^_{<ra)i N. The absorption coefficient, a, is defined by   a = n(<ra), and the 

absorption  efficiency  by   Qa-(
cra)/{A

P)-   Finally,  by  combining the  absorption  and 

scattering cross sections, we obtain, respectively, the extinction, absorption, and scattering 
cross sections given by  (ac) = (aa) + (<jh),   c = a+b, and   Q^Q+Q,- Equations (1)- 

(12) provide operational definitions for most of the inherent optical properties of interest in 
marine optics (c is usually referred to as the beam attenuation coefficient). 

2.2 Infinite cylinders 

The problem of scattering of a plane electromagnetic wave from an infinite cylinder can be 
solved by separation of variables in cylindrical coordinates [13,14]. If a detector is placed a 
distance r from the origin of coordinates (located somewhere on the axis of the cylinder), for a 
given orientation of the cylinder the quantities defined in Eqs. (l)-(4) can be formally 
computed in a straightforward manner. If r is sufficiently large, the scattered fields are oc Vr, 
so both the differential and the total cross sections are oc r; however, the scattering phase 
function is independent of r. Thus, the cross sections defined in this way lose their meaning as 
characteristics of the particle (they depend on how they are measured, i.e., r). Nevertheless, by 
constructing a large-diameter coaxial cylindrical surface of some length around the cylindrical 
particle, one can show that the scattering, absorption, and extinction cross sections per unit 
length are finite [13], so one can define scattering, absorption, and extinction efficiencies such 
that the cross sections of a given length of particle are finite, e.g., aa = QaLDcosg, where TI/2 

- c is the angle between the cylinder axis and the direction of the incident beam ( LDcosg is 
Ap for the length L of the cylindrical particle). 

For infinite cylinders the orientational averaging of various quantities cannot be carried 
out in the normal way. The difficulty is that if one were to try to use Eq. (6), regardless of how 
large r is made, there will be some orientations for which the detector is not in the far-field 
zone (or scattered field zone). Thus, the notion of the scattered field (fields oc Vr) is not 
applicable for all orientations and a fixed r. In contrast, quantities that are independent of r, 
i.e., the (9's, can be averaged over orientation in a straightforward manner [15], e.g., for a 
length L of cylinder, (£?). (CT )/(AP) = (QPAP)/(AP) = ({? cos ?)/(cos ?), etc. The scattering phase 

function is also independent of r, and one can formally define the its orientational average 

through (P(&,O)) = [1/JV]^ tP(®,<J>); however, this has no real physical meaning, as it 

cannot be used to retrieve an orientationally-averaged differential cross section. 

3. Cylinders examined in the present work 

The cylinders studied in this work are shown schematically in Fig. 1. The upper cylinder is 
homogeneous with refractive index mr - im„ relative to water. The lower cylinder (coated) has 
the same outer diameter (D) as the homogeneous cylinder, however the core diameter is D/2 
and the core index is mr - Aimt. The index of the outer layer is mr - 0/, so this simulates a 
situation in which the mass of absorbing material (or the number of absorbing molecules) is 
the same in the upper and lower cylinder, and allows simulation of the influence of the 
distribution of absorbing pigments in cylindrically shaped particles. In marine optics, there are 
two phenomena that are referred to as the "package effect." The first is the difference in 
absorption between equal quantities of absorbing material in solution or in particles suspended 
in the same volume [16-18]. The second is the difference in absorption between cells in 
which the absorbing molecules are uniformly distributed within the cell walls, and cells in 
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which the absorbing molecules are packaged in smaller structures, e.g., chloroplasts [6,19]. It 
is the second that we examine by considering the two cases in Fig. 1. 

t 
D 

I 
L 

Fig. 1. Specifications of the cylinders examined in this study. 

The computations were carried out for D = 0.5, 1.0, 1.5, 2.0 urn, L = 0.5, 1.0, 3.0, 5.0, 7.0, 
10.0, 15.0, and 20 urn, X = 400, 500, 600, and 700 nm (in vacuum), and mr - im, = 1.02, 1.05, 
1.05 - 0.002/, 1.05 - 0.008/, 1.05 - 0.010/, 1.05 - 0.040/, 1.10, 1.15, and 1.20, relative to 
water. The discrete-dipole approximation code [20,21] DDSCAT 7.0 was used for most of the 
computations presented here. The orientational averaging was carried out in the manner 
prescribed in the DDSCAT code. This averaging is not optimum for scattering by a very long 
cylinder because for a given orientation the scattered light is in the form of a thin cone 
containing the incident beam and the axis of which cone is coincident with the axis of the 
cylinder [13]. The cone broadens as the cylinder's length decreases. A more robust formal of 
the averaging for long cylinders has been described by Haracz, et al. [22]; however, as we 
show later, we believe that averaging process in DDSCAT is sufficiently accurate for the 
cylinders studied here. 

The computations were carried out on an 80 CPU cluster with a total memory of 160 GB. 
The dipole density was such that their lattice spacing was ~X /18 at 400 nm and ~/l/31 at 700 
nm. This insured that the backscattering cross section could be computed with an error < 
about 5%. Even with the multi-processor cluster, the computations were very time consuming 
for the larger particles: -10 days were required to compute the scattering (at 4 wavelengths) 
by a cylinder with D = 1.5 nm, L = 15 nm and m = 1.20. 

4. Extinction and absorption efficiencies 

The extinction and absorption efficiencies were computed using from the orientationally- 

averaged extinction and absorption cross sections   (cr)and   (<r,) through Q^ia^jl^A^ 

and Qa -(a°)l\Ap)where (Ap] = xD(L + D/2)/4 is the orientationally-averaged projected 

area (shadow) of the particle. Using the computed efficiencies for finite-length cylinders, 1 
asked several questions: (1) how do the efficiencies depend on the aspect ratio (AR = LID) and 
diameter of the cylinders?; (2) how do the efficiencies compare with those for an infinite 
cylinder with the same diameter?; and (3) how do the efficiencies depend on the distribution 
of absorbing material within the cylinders (Fig. 1)? 
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Fig. 2. Extinction and absorption efficiencies computed for randomly orientated, homogeneous 
or coated cylindrically shaped particles, given that their diameter and aspect ratio are known so 
that their orientationally-averaged projected area is nD(L + D/2)/4. Here, p = 1a (m-1) and p' 
= 4a m„ where m, - im,, is the refractive index of the particle relative to water, and a = nDIX. 
with D the cylinder's (outer) diameter and X the wavelength of light in the water. Solid lines are 
the exact computations for randomly oriented, infinite cylinders. The notation "m=1.05- 
040i_1.05-000i" indicates that the refractive index of the core is 1.05 - 0.040/. and the 
refractive index of the coating is 1.05 -0.000;', etc. In the case of coated cylinders,/? and/)'are 
computed using the m* of the associated homogeneous particle. Top: all aspect ratios (1/3 - 30). 
Bottom: all aspect ratios 5 3. 

Figure 2 provides the computed values of Qc and Qa for the all aspect ratios that were 
examined with absorbing cylinders (ra, > 0) and mr = 1.05. The notation in the legend is 
explained in the figure caption. The upper two panels are for all aspect ratios (1/3 - 30) and 
the lower panels for AR > 3. The lines correspond to exact computations for infinite cylinders 
with the same diameter using the IPHASE code [15]. For the case with weaker absorption, the 
results clearly show that the efficiencies closely follow those for infinite cylinders as long as 
AR > 3, for both the coated and the homogeneous cylinders. For the case with stronger 
absorption, the "package effect," the decrease in absorption when the absorbing molecules are 
not uniformly distributed with in the particle, results in lower absorption efficiency. 

This packaging effect is displayed more clearly in Fig. 3, for which I provide the ratio of 
the absorption efficiencies Qa for a coated cylinder with indices minside = 1.05-0.040; and 
Mouiside 1.05-0.000/ (^(Packaged)) to that of a homogeneous cylinder mimide = mourside = 
1.05-0.010/ ((?0(Homo)). Note that both cylinders contain the same number of absorbing 
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molecules. The figure shows that the effect of the absorbing pigment packaging is greatest in 
the blue region of the spectrum and for larger-diameter cylinders. The maximum decrease in 
Qa due to the packaging is about 25%. Although the symbols do not differentiate between 
cylinder lengths, for a given diameter the packaging effect is smallest in the shortest cylinder 
and depends very little on the length once AR exceeds unity. In the case with less overall 
absorption, i.e., minside = 1.05-0.008; and moutside = 1.05-0.000/ compared to that of a 
homogeneous cylinder minside = moulside = 1.05-0.002;, similar results are obtained; however, 
the maximum decrease in Qa due to the packaging is only about 10% (Fig. 2.). 
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Fig. 3. This figure provides the ratio of absorption efficiencies (coated to homogeneous) of 
strongly absorbing cylinders as a function of wavelength. The diameter of the cylinder (in um) 
is specified in the legend. For each diameter, the symbols refer to cylinder lengths ranging from 
0.5 to 15 urn The figure shows that the effect of the absorbing pigment packaging is greatest in 
the blue region of the spectrum and for larger-diameter cylinders. Although the symbols do not 
differentiate between cylinder lengths, for a given diameter the packaging effect is smallest in 
the shortest cylinder and depends very little on the length once the aspect ratio 
(length/diameter) exceeds unity. 

The extinction efficiencies of finite cylinders with larger values of p are compared with 
those of infinite cylinders in Fig. 4. In this case the refractive index is 1.20 and since there is 
no absorption Qb = Qc. The figure clearly shows that for AR > 3, the extinction efficiency is 
again close to that of an infinite cylinder, with all cases except two differing by less than ± 
10% (RMS difference -5%). 

Thus, it is clear that for homogeneous cylindrically-shaped particles with aspect ratios > 
about 3, the extinction efficiency becomes close to that of an infinite cylinder, i.e., 
QAD,mjLR) **Qc(D,m,<x>). This implies that (ac(D,m,AR)) *Qc(D,m,<x>)nD2(AR + l/2)/4, 

or for two aspect ratios AR and AR' (both > about 3), 

(crc(D,m,AR))    (ac.(D,m,AR')) 

(AR+ 1/2) (AR' + \/2) 
(13) 

Similar expressions hold for the orientationally averaged absorption and scattering 
efficiencies. Although Qc {D, w, oo) has not been computed for coated cylinders, presumably 
Eq. (15) should hold for such particles as well. 
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Fig. 4. gr as a function of p. computed for non-absorbing cylinders (m = 1.20 - 0.000;) with 
diameters (D) ranging from 0 5 urn to 2.0 urn. Left: 0.25 < AR < 30 (points colored in red are 
AR = 2). Right: 3 < AR < 30. The solid curve is the extinction efficiency (for a unit length) of 
randomly-oriented infinite cylinders. As in Fig. 2, p = 2a (m -1) with a = KD/A. 

5. Phase function and backscattering probability of cylinders 

We have seen that the extinction and absorption efficiencies of micrometer-sized cylindrical 
particles depend little on the aspect ratios as long as AR > 3. Is this the case for the phase 
function and backscattering probability? I mentioned earlier that the default orientational- 
averaging scheme used in DDSCAT 7.0 was employed in the present computations. Is this 
default sufficient to provide orientational averaging for long cylinders? To examine this 

question, I computed the orientationally-averaged phase function (and bh) for cylinders with 
small and large AR. To achieve the very large variation in AR, I used D = 0.25 urn. The results 
of this computation are shown in Fig. 5. One sees that with the exception of small scattering 
angles (© < 8°), as AR increases the computed phase function simply becomes "noisier." This 
is what would be expected, as the scattering pattern (for a given orientation) degenerates into 
an infinitely thin cone as L —> oo. Careful examination shows that there is a high correlation 
between the "noise" at AR = 100 and 200, etc., as would be expected as the scattering cone 
thins. Since the thickness of the scattering cone depends mostly on X / L (the thickness 
decreases as L increases), I conclude that for the values of L examined in this work (< 25 um) 
the averaging procedure in DDSCAT is sufficiently accurate to yield reliable phase functions 
and backscattering probabilities. 

Figure 6 provides another example of the weak dependence of the scattering phase 
function (and degree of linear polarization) on aspect ratio. Virtually the only differences in 
the phase function between AR = 20 and AR = 3 are the enhanced scattering near zero degrees 
and the deeper minima near 30°, 50°, 80°, and 130° for AR = 20. This weak dependence on 
aspect ratios as long as AR > 5 is also displayed by the backscattering probability as shown in 
Fig. 7 for a wide range of refractive indices and particle diameters. 
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Fig. 5. Orientationally averaged scattering phase functions for long cylinders as a function of 
aspect ratio (AR). The values of the computed backscattering probabilities are 0.0212, 0.0212. 
0.0209, 0.0218, and 0.0220, for AR = 5. 10. 100, 200, and 270, respectively. The values of the 
extinction efficiency (Qc) are 0.999, 1.007, 1.032, 1.033, 1.033, and 1.034 for AR = 5, 10, 100, 
200, 270, and oo, respectively. The value of p for these efficiencies is 1.0472, so these 
computations fall very close to the continuous curve in Fig. 4. (Note, L = 1.25, 2.50. 25.0, 50.0, 
and 67.5 urn for AR = 5, 10, 100, 200. and 270. respectively.) D = 0.25 um. m = 1.20, X = 
400 nm. 
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Fig. 6. Orientationally-averaged scattering phase functions (left) and degree of linear 
polarization (right) at 600 nm (vacuum) for homogeneous cylinders with a diameter of 1 urn 
and length of 3 um (DlxL3) and 20 um (DlxL20). The refractive index is 1.05 - 0.002;. The 
oscillatory nature of the phase function is determined mostly by D/A, but with some 
dependence on m. 
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Fig. 7. Examples of the variation of the backscattering probability with aspect ratio for cylinder 
diameters between 0.5 and 1.5 urn and refractive indices ranging from 1 02 to 1 20 The black 
curves are for a vacuum wavelength of 400 nm and the red curves for 700 run. 
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These        computations        show        that        when        AR        >        about 
(crbb(D,m,AR)) & <rhb(D,m,x>)(crb(D,m, AR)), and in a manner similar to Eq. (13), 

(abb(D,m,AR)) _ {ahb(D,m,AR')) 

(AR + l/2) (AR' + \/2)     ' 

3-5, 

(14) 

with both AR' > AR =3-5 (Figs. 7 and 13). I used Eq. (14) to compute the orientationally 
averaged backscattering cross section for cylinders with D = 1 urn and AR' > 5 from AR = 3 
and for AR' > 7 from AR = 5 with m - 1.05 - 0.010/. The rms error was 2.5% for AR = 3 and 
1.2% for AR = 5. Similar computations with m = 1.20 - 0.000/ resulted in rms errors of 8.1 % 
and 2.6% for AR = 3, and 5, respectively. 

6. Cylinders compared to equal-volume spheres 

A well-known approach to estimating the complex refractive index of marine particles, e.g., 
phytoplankton, is to measure their extinction and absorption coefficients and the particle 
volume (e.g., with a Coulter Counter). The particles are then assumed to be homogeneous 
spheres and the extinction and absorption efficiencies are computed. Real and imaginary parts 
of the refractive index are then found which, for a spherical particle, would yield the same 
extinction and absorption efficiencies (see, for example, Ref. 18). I have tested this approach 
using the extinction and absorption cross sections described above for cylinders. Rather than 
using the exact computation of Qc and Qa for spheres, it is much simpler to use the analytical 
formulas of the van de Hulst anomalous diffraction approximation for the scattering and 
absorption efficiencies of a homogeneous sphere. These are [14] 

Qa(p') = l + 2^tPl + 2^t^hl, (15) 

and 

g.(p) = 2-4exp(-ptan/?) 
cos/? . ,     _   cos2/? 
—f- sin(/> - /?) + —f- cos(p - 2/?) 

cos* B 
+ 4—-r-oosiiP). (16) 

30- **^fW^*** 
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Fig. 8. The extinction (left) and absorption (right) efficiencies computed by dividing the 
associated cross sections by the projected area of a volume-equivalent sphere as a function of p 
and p '. Here, p = 2a (m-\) and p'= 4a m„ where mr - im„ is the refractive index of the 
particle relative to water, and a • itrf/i, where d is now the diameter of the volume-equivalent 
sphere. For a given experimentally-determined Qa. the dashed vertical arrow provides the 
correct p ' (and, hence m,), while the solid vertical arrow provides the retrieved value of m,. 
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where p = 2a (m-l), p'= 4a mh tan /? = mJim-l), and a = ndIX, with d the sphere's diameter 
and X the wavelength of light in the water. In this analysis, we take d to be the diameter of a 
sphere with the same volume as the cylinder, i.e., the equal-volume sphere. Fig. 8 provides the 
extinction and absorption efficiencies computed assuming the spherical shape, e.g., 
Qa=4(aa)/xd2 , along with Qc and Qa computed with the Van de Hulst anomalous 

diffraction theory (VdH), and with exact the Mie theory (MIE). There are three important 
observations to be made from Fig. 8: (1) the volume-equivalent sphere assumption is not very 
good in the case of Qc (left figure) even if full Mie theory is used; (2) the volume-equivalent 
sphere assumption is better in the case of Qa (right figure), especially if full Mie theory is 
used; and (3) the package effect, while relatively unimportant for Qc, is important in Qa (right 
figure) for the case with stronger absorption, but not for the case with weaker absorption. 

How much error does the deviation of the derived Qc and Qa from Eqs. (18) and (19) make 
in estimating the refractive index? Given the volume of the particle, and assuming a spherical 
shape, c/and a are determined. Calculations of the beam attenuation coefficient and absorption 
coefficients for coated cylinders were inserted into Eqs. (15) and (16) to find mr and m,. 
Figure 9 provides the resulting computations for a coated cylinder with indices mimide = 
1.05-0.040/ and mou,Sjde = 1.05-0.000/, and all combinations of diameter and length. Recall 
that the package effect is larger for this case. Ideally one should derive an index of 
1.05-0.010/, based on the concentration of absorbing material. Clearly, mt is retrieved to 
within ± 20% with an average (over all sizes) close to 0.010, and the retrieved mr appears to 
be too low in almost all cases, but averages -1.044. One notes that if the exact Mie theory 
were used in the retrieval of m, (Fig. 8) the retrieved values would be about 10% larger than 
shown in Fig. 9 due to the 
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Fig. 9. An example of retrievals of the real and imaginary' parts of the refractive index for 
coated cylinders for all the combinations of diameter and length, using the van de Hulst 
approximation. Ideally one should derive a real part of 1.05 and an imaginary part of 0.010. 
The scatter shows that m, is retrieved to within ± 20% (somewhat better in the red) with an 
average (over all sizes) close to 0.010, and that the retrieved mr appears to be too low in almost 
all cases, but averages -1.044. 

inaccuracy of the Van de Hulst approximation to Qa [Eq. (15)]. However, the exact Mie 
results cannot actually be used because mr is required, and as we see in the figure, it is 
strongly dependent on AR. Thus, it is clear that measuring particle volume and the extinction 
and absorption cross sections, assuming the particles are spherical, then applying Eqs. (15) 
and (16) does yield meaningful results for m, even for particles with large aspect ratios; 
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however, the retrieved values of mr depend strongly on the aspect ratio. It is interesting to note 
that if one employed the homogeneous infinite-cylinder assumption in the analysis of the 
cross sections (Fig. 2) for this example, the error in the retrieved w, would actually be larger 
than for the equivalent-volume sphere approach: accurate retrieval would require 
consideration of the package effect, probably by using a coated infinite-cylinder retrieval 
model. 

For larger values of the refractive index of the cylinder, this method fails completely when 
the cylinder becomes too large. A dramatic example of this failure is provided in Fig. 10, 
which shows Qc for cylinders determined from the cross-sectional area of the equal-volume 
sphere (in a manner identical to that in Fig. 8), and p evaluated using the diameter of the 
equal-volume sphere. The thick solid line in the figure is the Van de Hulst approximation to 
Qc. Note that for p > about 3, for most cases shown, there is no refractive index value for 
equal-volume spheres that can produce the associated extinction efficiency. Thus, this method 
often fails to provide any value for m. 

Q, (Assuming Spherical Shape) 

Fig. 10. The extinction efficiency computed by dividing the associated extinction cross section 
by the projected area of a volume-equivalent sphere as a function of p. Here. p = 2a {m-l) and 
a = TidlX, where d is the diameter of the volume-equivalent sphere. Points for some given 
diameters and lengths are connected by smooth curves (for which X varies from 400 to 700 
nm). The red curves are for diameters of 1.0 and 1.5 um with AR = 10. The thick curve is the 
Van de Hulst approximation to Qc for spheres. 

Given the values of mr and /n, derived from measurements of the absorption and extinction 
efficiencies, the particle volume, and the assumption of sphericity (using the methodology 
described above, when it works, i.e., for low-index cylinders), how well does the predicted 
backscattering cross section reproduce the actual backscattering cross section of cylindrical 
particles? To shed light on this question, I used the retrieved refractive indices shown in Fig. 9 
and Mie theory to compute o|f*) for comparison with its cylindrical counterpart CT^'"for 

each wavelength and particle size. The ratio R = crfb
yl)/<j[fh) shows some spectral variation. 

but to gain a better perspective on the influence of particle shape, I averaged R over the visible 
spectrum for each size. Figure 11 (black points/lines) shows the resulting R for particles with 
diameters -1-3 times the wavelength as a function of the aspect ratio. The red points/lines on 
the figure provide R values when the true value of the cylinder's refractive index is used to 
compute the backscattering the sphere, rather than that determined from particle extinction, 
absorption, and volume. We note that for cylinders in this size range, R is greater than 1 and 
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increases approximately linearly with aspect ratio. The large values of R when the index is 
retrieved from extinction, etc., is due to the increased error in the derived values of mr as the 
aspect ratio increases (the retrieved mr becomes smaller as the aspect ratio increases, and 
<Tjf" is a strong function of mr). Thus, the extinction, absorption, volume, and sphericity- 

assumption methodology cannot yield reliable values of the backscattering cross section of 
cylindrically shaped particles with even moderate (>5) aspect ratios; however, if the correct 
refractive index is known and used in the computation, the backscattering of the equal-volume 
sphere is much closer to that of the cylinder. 
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m = 1.05 - 0.010/, Visible Spectrum 
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Fig. 11. Backscattering by a cylinder divided by backscattering by an equal-volume sphere. 
Black curves: refractive index in the computation of <TM, for spheres is that derived using the 
refractive index determined from the extinction and absorption cross sections using the 
equivalent-volume sphere assumption. Red curves: refractive index in the computation of ahb 
for spheres is the same value used for the cylinders, i.e., the correct value. Diameter (D) is in 
micrometers, and the true value of the refractive index is 1.05-0.010/. 

The backscattering ratio R for the higher index (1.20 - 0.000/') is shown in Fig. 12. Note 
that in this case ahk

y < a\f . Thus, in the size range examined here, backscattering by 
cylinders appears to be larger than equal-volume spheres at low refractive indices and smaller 
at high refractive indices. 

Absorption appears to have only a small effect on the backscattering by cylinders; 
however, the packaging of the absorbing substance within the cylinder can have a significant 
effect, especially when the absorption is large. Figure 13 provides the backscattering 
probability for cylinders (homogeneous and packaged) for all cases studied with mr = 1.05. 
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Note that when the absorption is weak (w, = 0.002 with a homogeneous distribution of 
absorbing molecules, •, or mi = 0.008 with the absorbing molecules confined 

m = 1.20 -0.000/, A = 400 nm 
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Fig. 12. Backscattering by a cylinder divided by backscattering by an equal-volume sphere. As 
the refractive index in this case cannot be derived from the extinction efficiency, in the 
computation of <rtt for spheres m is the same value used for the cylinders. Diameter (D) is in 
micrometers, the wavelength is 400 nm, and the true value of the refractive index is 1.20- 
0.000;. 

to the inner cylinder of Fig. 1, •) there is little difference in the backscattering probability 
and that of a non-absorbing cylinder (•). In contrast, for the more strongly absorbing, 
homogeneous (0) or packaged (•), cylinders, absorption clearly influences the backscattering 
probability with larger values for the packaged case. 
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Fig. 13. Backscattering probability as a function of aspect ratio and the imaginary part of the 
refractive index for non-absorbing to strongly absorbing, homogeneous and structured 
cylinders. D is in micrometers. 

7. Comparison with spheroids 

A limited number of computations have been carried out for prolate spheroids to see if the 
conclusions regarding the influence of aspect ratio on light scattering by cylinders applies to 
spheroids. Fournier and Evans [23] have provided a highly accurate anomalous diffraction 
approximation to Qc for spheroids. If one uses their relationships for a spheroid with minor 
axes D and major axis L (AR = LID), it is seen that Qc becomes almost independent of AR for 
AR > about 3. I have carried out computations (using DDSCAT) for spheroids with D = 0.5, 
1.0, and 1.5 urn, and AR = 3, 5, and 10, for m = 1.05 - 0.010/ and m = 1.20 - 0.000;. The 
resulting values of Qc (and Qa) are virtually independent of AR and agree well with the 
Fournier and Evans [23] result for large AR (e.g., AR = 100). 
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The independence of the backscattering probability on AR for AR > 3-5 for cylinders is 

also seen for spheroids of similar size. The results presented in Table 1 suggest that the 
backscattering probability for spheroids becomes essentially constant for AR > about 5. Thus, 
our conclusions regarding the dependence 

Table 1. The RMS the Backscattering Probability for Spheroids with Aspect Ratio AR = 
10 to that for Spheroids with the Same Minor Axes but Aspect Ratio AH. D = 0.5,1.0, and 

1.5 pm, and / = 400,500,600, and 700 nm 

m AR = 3 AR = 5 
105-0.010; 10.9 3.4 
1.20-0.0001 18.6 2.5 

of light scattering properties on AR for cylinders appear to apply equally well to spheroids. 
It should be noted that when D and L are « X, and the polarizabilities are determined in 

the electrostatic approximation (Rayleigh approximation [13,14]), the total scattering for 
spheroids is proportional to the square of the volume times a factor that is dependent on AR. 
This latter factor becomes nearly independent of AR for AR > ~ 3 for the refractive indices of 
interest here. In this case,   ah   « (D2L)2 = DbAR2, and 

(<Jh{D,m,AR))    (ab(D,m,AR')) 

AR2 ~ AR'2 

Equation (17) replaces Eq. (13) in this regime, and since ahh = 1/2, independent of AR. a 
similar expression replaces Eq. (14). Again, similar expressions also apply to cylinders. 

8. Concluding remarks 

As stated in the abstract, I have shown the extinction, absorption, and scattering efficiencies, 
and the backscattering probability of randomly oriented, homogeneous and structured, 
cylinders become nearly independent of the aspect ratio when AR > -3-5, for refractive 
indices characteristic of marine particles (organic and inorganic). This applies to cylinders 
with diameters in the range 0.25 to 1.5 urn when illuminated with visible light (wavelength, 
400-700 nm). Some long-chain phytoplankton, e.g., Prochlorotrix hollandica, fall in this size 
range [24]. It should also apply to much larger cylindrically-shaped particles, i.e., in sizes for 
which geometrical optics is applicable. Computational schemes for intermediate sized 
cylinders with high aspect ratios are not available; however, as the validity of the observation 
does not appear to depend on the actual diameter of the cylinders (Figs. 7 and 13) in the size 
ranges examined, one would expect that it would apply to intermediate sized particles as well. 
A limited number of computations for prolate spheroids suggest that the observations apply 
equally well to particles with this shape. This should simplify the inclusion of AR- 
distributions in the characterization of scattering by marine particles. 

In order to interpret measured particle extinction and absorption cross sections to obtain 
the refractive index for single-species of phytoplankton, it is of course best to use a close 
approximation to the particle's shape in the necessary model calculations, i.e., there is no 
canonical shape that can be used for all particles. For cylindrical particles with aspect ratios 
greater than 3, it appears that infinitely-long cylinders (homogeneous or coated) with the same 
diameter (shorter dimension) are adequate for estimation of the refractive index. For other 
particles, other shapes will be appropriate; however, I expect that for particles that can be 
represented by "simple" shapes, e.g., spheroids, linear chains of spheres or spheroids 
(homogeneous or coated), etc., the cross sections will be proportional to the length, and the 
efficiencies will depend mostly on diameter for aspect ratios 3 or greater, as they do for 
cylinders. For the commonly used equivalent-volume-sphere approximation to obtain 
refractive index [18], we found that for cylinders the absorption index (mf) can be determined 
with reasonable accuracy, i.e., ~ ± 20%, when mr is low as it usually is for phytoplankton [24]. 
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Remarkably, this approximation is actually better in retrieving m, than using a homogeneous 
cylinder to model (incorrectly) a coated cylinder (Fig. 2). This suggests that in the absence of 
shape information, the equivalent-volume-sphere approximation is capable of yielding 
realistic estimates of m, for low-mr particles that deviate significantly from spheres. When mr 

is high, the method fails completely (Fig. 10), and a more appropriate shape is required to 
interpret the observed cross sections. 

In the case of backscattering, for the low index particles we examined, using the index 
retrieved through the equal-volume-sphere assumption, and computing abb for the equal- 
volume sphere, can lead to an underestimation (<r^W) > crlfh)) of cylinder backscattering by a 
significant factor (Fig. 11), largely because of the inaccuracy in estimation of mr\ however, if 
the correct value of the refractive index is known, the error is significantly decreased. For the 
high-index case (for which the equal-volume-sphere analysis fails), given the correct value of 
the refractive index, the equal-volume sphere backscatters more than the cylinder, i.e., 
(T^*'1 <a(

bf
h)- Thus, prediction of a^by this method for low index particles could account 

for some of the "missing" backscattering suggested for marine particles [4]; however, when 
the correct index is used in the computations, the underestimation is greatly reduced or 
eliminated completely. 

Although the computations presented here represent a grossly inadequate span of cylinder 
sizes due to inadequate computer resources, they do suggest the manner in which particles 
with high aspect ratios can be included in scattering computations carried out at lower aspect 
ratios, particularly when the diameter of the particle is of the order of X. 
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Rayleigh-Gans scattering approximation: 
surprisingly useful for understanding 
backscattering from disk-like particles 

Howard R. Gordon 
Department of Physics, University of Miami, Coral Gables, FL 33214 

Abstract: Recent computations of the backscattering cross section of 
randomly-oriented disk-like particles (refractive index, 1.20) with small- 
scale internal structure, using the discrete-dipole approximation (DDA). 
have been repeated using the Rayleigh-Gans approximation (RGA). As 
long as the thickness of the disks is approximately 20% of the wavelength 
(or less), the RGA agrees reasonably well quantitatively with the DDA. The 
comparisons show that the RGA is sufficiently accurate to be useful as a 
quantitative tool for exploring the backscattering features of disk-like 
particles with complex structure. It is used here to develop a zeroth-order 
correction for the neglect of birefringence on modeling the backscattering of 
detached coccoliths from E. huxleyi. 
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1. Introduction 

Satellite remote sensing of ocean color [1] is now a well-developed tool for studying 
phytoplankton dynamics on regional to global scales ([2], and papers therein). The term 
"ocean color" refers to the water-leaving spectral radiance, i.e., the radiance resulting from 
the backscattering of sunlight out of the water. This radiance is proportional to the ratio of the 
backscattering coefficient bh (the differential scattering cross section per unit volume 
integrated over the backward hemisphere) and the absorption coefficient a of the medium 
(water plus constituents) [1], i.e., btJa. Thus, understanding the backscattering coefficient of 
the suspended constituents of the natural waters is a central problem in marine optics. 
However, the backscattering coefficient of marine particles is arguably the poorest known of 
the inherent optical properties of natural waters [3], and much effort is being focused on 
remedying this situation. The inherent optical properties of marine particles are most-often 
modeled as homogeneous spheres using Mie Theory. Although this approach has been 
fruitful, the next logical step in modeling marine particles is to abandon the normally- 
employed spherical approximation and use more realistic approximations to their shape. The 
advent of computer codes capable of handling more complex shapes [4], and the increased 
computational speeds now available, suggest that particle modeling employing simple non- 
spherical shapes, e.g., disks, rods, etc., could become routine. Gordon and Du [5] used a two- 
disk model to try to reproduce the backscattering by coccoliths detached from E. huxleyi. 
This particular marine particle was chosen for study because (1) its shape is rather precisely 
known, resembling a disk or two roughly parallel disks; (2) its composition is known 
(Calcite), providing its refractive index relative to water (-1.20); (3) its backscattering 
properties have been measured [6-8]; and (4) it is amenable to remote sensing [9,10]. They 
found that, while the resulting spectral variation of the backscattering cross section agreed 
with experiment, its magnitude was low by a factor of 2-3. Such simple shapes are still at 
best poor approximations to real particles. Thus, to try to understand this discrepancy, I asked 
[11] the following question: how far can the actual shape of a particle deviate from these 
simple shapes and still be realistically modeled by them? To shed some light on this issue. I 
used discrete dipole approximation (DDA) solutions [12, 13] to the scattering problem to 
investigate the backscattering by disk-like particles possessing periodic angular fine structure 
(disks divided into equal-angle sectors with alternate sectors removed), i.e., more closely 
resembling E. huxleyi coccoliths. When the scale of the periodicity (the length of an open or 
closed sector measured along the circumference of the disk) was < AJ4 (where A is the 
wavelength of the light in the medium, i.e., water), I found the backscattering to be nearly 
identical to that of a homogeneous disk possessing a reduced refractive index. However, 
significant increases in backscattering were observed when the scale of the periodicity was 
greater than AJ4. 

For many of the cases examined, I have also computed the backscattering cross section 
using the Rayleigh-Gans approximation (RGA) to scattering. The RGA is applicable when 
the relative refractive index of the particle (m) is close to unity, and the "size" is « the 
wavelength of light divided by \m - 1| [14, 15]. Thus the size need not be « the wavelength. 
It is computationally fast when compared to any other method because analytical formulas are 
available for many particle shapes. Moreover, extension to particles of any shape is 
straightforward. 
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In this paper I compare backscattering by disk-like particles (with refractive index 1.20 
relative to water) computed using the RGA with exact (DDA) computations. The comparisons 
show that the RGA is sufficiently accurate to be useful as a quantitative tool for exploring the 
backscattering features of disk-like particles with complex structure, e.g., disks with angular 
periodicities or detached coccoliths from the coccolithophored E. hnxleyi. The validity of the 
RGA for such particles allows investigation of the influence of their birefringence on 
backscattering. 

2. The Electromagnetic scattering problem 

Conceptually, the electromagnetic scattering problem can be developed in a simple manner. 
If a particle is subjected to an incident electromagnetic field £,0lm  A, then a volume 

element dVt at a position £j within the particle (Fig.  1) will experience an electric field 

£(Dj,0
givenby 

E{Dltt)^Ew{D„t)+YtC0„DJ)E(bj,t), W 
j 

where the sum excludes /=/'. The £'s on both sides of this equation are unknown, while if101 

and C are known functions of position and time. This electric field induces a dipole moment 
(dp) in dVj given by 

c$(Dl,t) = p„aE(D„t)dVl, (2) 

where a is the polarizability tensor and p„ is the number density of atoms (molecules). At a 
great distance f from the particle the field due to the dipole moment induced in dVt is 

</£<*> = —jcxlicxdp&j-rjc)], (3) 

where K is the vector shown in Fig. 1 (i ^ i _ 2;r//l' where A is the wavelength of the incident 

field in the medium in which the particle is immersed, and | K \ = \ k0 |) and c is the speed of 

light. The vector p is assumed to be sufficiently far from the origin (0) that it may be 

replaced by f except where it occurs in a phase. The total field at r , given by 

Ets)(r,t) = \dEU)(rj)< (4> 
is the "scattered" field. 

In the laboratory reference frame (x,y,z), the incident electric field propagating in the ^ 

direction is given by 

Em(D„t) = Em exp[/(j?0 • D, - cot)] > <5) 

where the field amplitude is resolved into components parallel and perpendicular to the 
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Fig. 1. A volume element dV„ located at a point D, from the origin of coordinates (O). The 
incident radiation is propagating in the «o direction and the scattered radiation is propagating in 
the K direction. The vector r, is from the volume element dV„ to a distant point at which the 
scattered field is measured. The vector r is from the origin to the same distant point, which is 
sufficiently far from the particle that the vectors r, and r are considered to be parallel. 

,(0) ">• Z 

y 

£(0) 
K, 0 

Fig.  2. The plane formed bv the propagation vector   p of the incident wave and the 

propagation vector K of the scattered wave is the scattering plane.  The incident and scattered 
fields are resolved into components parallel and perpendicular to the scattering plane, i.e., 

along (e(0),e<0)) ""d (e ,e ). respectively. 6 is the scattering angle. 

#81247-$15.00 USD 

(C) 2007 OSA 
Received 20 Mar 2007; revised 19 Apr 2007; accepted 19 Apr 2007; published 23 Apr 2007 

30 Apr 2007 / Vol. 15, No. 9 / OPTICS EXPRESS 5575 



scattering plane (See Fig. 2): 

Er) = E•??)+E?)?; (O)-(O) 

r-(0) 
\ht    J 

Resolving the scattered field EM into components parallel and perpendicular to the scattering 

plane as well (note that g'0' and Q are not parallel), the scattered field at r, which is in the 

form of a spherical wave, can then be written 

exp[/(«- - an)}, (*>) 
1 

E{s> = — AEm exp[/(»- - cut)]    or 
in- (£<*'J    '"• 

where A is the 2*2 scattering amplitude matrix, and 

?<') <„ AlrVEr) 

ffW 
F"-£J*'^+£^'^- 

M 

3. The differential scattering cross section 

To relate the scattered field to scattering cross sections, etc., we recall that the time averaged 
Poynting vector of the scattered field is 

(S) = -*-(E,£; + EX) 'TT-fr*) = *- • (7) 

Where the superscript * indicates the complex conjugate, the tilde indicates the transposed 
matrix and, dP is the power crossing an area dA oriented normal to the propagation direction 
K (i.e., the irradiance associated with the propagating field). The differential scattering cross 
section is defined to be the power scattered into a solid angle d£l divided by the irradiance of 
the incident beam, i.e.. 

da _ dPu)/dn 
dQ. " dPm/dA 

lS") 
|(5-) 

(8) 

where the superscript us" stands for "scattered" and the superscript "0" stands for "incident." 
The required Poynting vectors are given by 

(smh— £<0)'£(0) and Hh- i 

so 

da     1 
dQ. 

2//0c Klr- 

Em'A'AEi0V 

E(0)'\AE Ml) 

(9) 
£(0)*£(0) 

If the incident field is unpolarized, then 
^(o»*£(0)\     ^£,o,'£«o,^   and   ( 

and the differential cross section becomes 

!i(orA*A£(0) 

(01    r-(O) £;o,) = o = (£;u' E 7(0)     E-(0| 

da     1 
dQ. £<0)'£(0) 

1 

2K
2 (I i  i2    I.I2    I.I2    i .  i2\ A„\  +\Alr\  +\Art\  +\Alt\ j. (10) 

(Note: the quantity S\\ defined by Bohren and Huffman [14] is Kdal dil.) 

4. The Rayleigh-Gans approximation 

In its simplest form, in the Rayleigh-Gans Approximation [4, 14, 15] (RGA) to scattering, the 
sum in the Eq. (1) is ignored (C = 0), i.e., the only field experienced by dV, is the incident 
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field. Thus, the RGA provides the "zeroth-order" approximation to the scattered field. In the 
laboratory reference frame (x,y,z), the incident electric field is given by Eq. (5) so the induced 
dipole moment [Eq. (2)] is 

dp, (A ,t-r,/c) = pMD, )£,0) 0, J-r, /c)dV, 

= A,a(Z>,)£,0) exp[/(v0 • £>, - cot + ^co/c)] dV, . 

Then noting that K - co I c, we have ^col c = Kri = Kr-K*bf 

dp^t-rJc^pjaUD,)^ exp[/(/r0 -K)• £.]exp[/(*r-cot)]dV, • 0 D 

Resolving the fields into components parallel and perpendicular to the scattering plane, as in 
Eq. (6) the scattered field is 

(12) 

(13) 

dE{s) = —dA Em exp[i(*r - ax)], 

where dA, is the contribution to the matrix A from dVt and is given by 

dA=- Kx[icxa(D.)]exp[i(ic0 -k)»D,]dV, 

The scattering plane is the x-z plane (Fig. 2), so 

£(0) = £<°>e,° + El0)e°r = Ef\ - El
r
0)ev, 

EU) = El
t% + E?e, = E\s) cos Qex - E^ey - E\s) sin Qe2, 

it = K{ex sin 0 + e, cos 0), 

and 

Inserting these into the equation for c/A, yields 

dA,= 
ip„K} 

4*3F„ 

ex. a. 
- a„ sin 0 + or   cos©   a., sin © - a„ cos© 

e\p[i{Ku-K)»D,]dV,, (,4> 

where the a's are the components of a in the laboratory reference frame (x,y,z).  The total 
scattered field is found by integration over the volume of the object: 

Aj££Lfff( ~a- a- 
4x£n *•• I-a  sinO+or cos0   or sinQ-or  cos© 

exp[i(K0-K-)»D]dV. (,5> 

If the a's are independent of position within the particle, the matrix can be removed from the 
integration. If the particle's polarizability tensor is isotropic (i.e., «;, = a Sij) then A reduces 
to 

_-ipsmc'(l       0 
Anen    {0   cos 

J/JJ exp[i{,c0-£)*D]dV, 

and the differential cross section becomes 

da _(pn<XKz\ (l + cos2©) 

dQ    { Ane, 
JJJ exp[i(ic0->c).D]dV 

(16) 

(17) 

The polarizability of the particle can be related to the refractive index, m, through the 
Clausius-Mossotti equation: 

A.* = 3 
m2-P 

m2 + 2 
(18) 

and defining 
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K.jJJ exrfifo-*)•£] tfK, 
V 

we have 

dQ    \6K-     {m2+2){      2      ) 

for the differential scattering cross section of a single particle of volume V. If the particle is 
immersed in a refracting medium, then m is the refractive index of the particle relative to the 
medium. 

The total (cr) and back (crb) scattering cross sections are, respectively. 

cj=[\^-dQ   and   a        ff   da_ ^ (20) 
JJ  rtO h       JJ   HO dQ '      "   dQ t/i Back lit 

while the scattering phase and volume scattering functions are 

p(0)=4^o(0)    ^   fi(Q)sNdff(<B)t (21) 
cr    dQ dQ. 

where A7 is the number density of scatterers. The contribution that particles of a given size 
and shape make to the total scattering coefficient (b) and the backscattering coefficient (bh) 
are b = Mr and bb m Naj,, respectively. In the RGA, the shape of the particle enters only 
through the computation of R. Analytic formulas are available for simple shapes, e.g., 
spheres and cylinders; however, it is easy to carry out the integrations numerically for 
particles of any shape. For particles other than spheres, R depends on the orientation of the 
particle. For particles with a given orientational distribution function, dddQ must be 
computed for a large number of orientations and the appropriate weighted average formed. 

The fact that dVt is subjected only to the incident field requires that two conditions must 
hold for the RGA to have validity: (1) there must be insignificant refraction or reflection at 
the surface of the particle, which implies \m - \\ must be « 1; and (2) the phase of the 
incident field must not shift significantly over distances of the order of the "size" (L) of the 
particle, which requires KL\ m - 11« 1. 

This is one of many forms of the RGA. The resulting cross section becomes coincident 
with the equations in van de Hulst15 by using the requirement that \m - 1| « 1 so that pno/e^ 
2(m - 1). Refinements to the RGA have been proposed by several authors, such as using the 
electrostatic approximation to relate the polarizabilities to the refractive index [16], or 
replacing the magnitude of the propagation vector in the medium by that in the particle [17]. I 
employ the form presented here because it is more closely related to the DDA, i.e., the DDA 
[18] uses the Clausius-Mossotti relationship modified to include radiation reaction and the 
"lattice dispersion relation." 

5. Comparison between RGA and DDA for disk-like particles 

In what follows we compare the backscattering cross sections (oi) of randomly-oriented disk- 
like objects computed via the RGA and the DDA. The DDA results are taken as "exact" 
computations (the DDA-computed <7/,'s are expected to be in error by no more than 5%). As 
an early motivation for such comparisons was interest in the backscattering of coccoliths 
detached from E. huxleyi suspended in water, I consider disks with diameters 1.5 to 2.75 um 
with m = 1.2 (Calcite in water). Figure 3 provides such a comparison for a 2.75 um 
homogeneous disk of various thicknesses (/). The comparison shows that the RGA is 
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Disk: Diameter 2.75 urn 

D DDA 0.05 
0.07 

V *• ADDA 0.10 

ODDA0.15 
0.06 • /oA •             • RGA 0.05 

_   0.05 

3- 0.04 

f 
Q               ^        ARGAO.IO 

O                   .     •RGA0.15 

% 
O 

0.03 J O 

0.02 

/ 

°                   t 
o         ° 0 o                 < 0.01 

/ 
—1        1 

0.1 0.2 0.3 

'/^ Water 

U4 0.5 0.6 

Fig. 3. Comparison of the backscattering cross section computed with the RGA and the DDA 
for a homogeneous disk of diameter 2.75 urn and thicknesses 0.05, 0.10. and 0.15 urn. 

close to the DDA for r/Awaier less than, or approximately equal to. 0.20 to 0.25. Perhaps more 
importantly, the comparison shows that a, can be expected to oscillate with increasing / (or 
decreasing /twater), i.e., the RGA also provides the qualitative character of the spectral 
variation of oj. It should be pointed out that the (approximate) "physical optics" developed 
by model of Gordon and Du [5] out performs the RGA when r/AWater > 0-2, following the 
DDA reasonably well up to a r/iwater of 0.8.; however, it cannot be applied to the more 
complex particle shapes of interest here, e.g., disk-like particles with periodic angular fine 
structure. 

For a more complex example, Fig. 4 compares RGA and DDA computations of ah for the 
Gordon and Du [5] "fishing-reel" model of a detached coccolith. The fishing-reel model 
consists of two parallel disks of diameter D0 with material removed from a concentric circle of 
diameter D, (i.e., a washer-like object). The two disks are joined together by a hollow 
cylinder of inner diameter £>, and outer diameter Dr. The axis of the cylinder passes through 
the center of both disks. The individual disks have a thickness of 50 nm and the space 
between them (the height of the joining cylinder) is t. Table 1 provides values of the 
parameters of the three fishing-reel models investigated. The three models all have the same 
volume (-0.587 (im3). This is accomplished by decreasing the thickness of the wall of the 
connecting cylinder as shown in Table 1. 

For these models, the individual disks have a thickness of 0.05 (im, and therefore are 
within the //Awater < 0.2 criterion from Fig. 3 in the visible. As in Fig. 3, Fig. 4 shows that the 
RGA and DDA produce qualitatively similar spectral variations, and surprisingly good 
quantitative agreement even though the total thickness of the particle exceeds /Iwater in some 
cases, and the total diameter is several times AWat„. Comparison of the two suggests that the 
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Fishing Reels D 0 = 2.75 Mm 
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Fig. 4. Comparison of RGA and DDA computations for the Gordon and Du [5] "fishing reel" 
models of a detached coccolith. 

Table 1: Parameters of the Gordon and Du [5] "Fishing-reel" model of a detached coccolith. 

Model D0 

(Mm) 
A 

(Mm) 
A 

(Mm) 
t 

(Mm) 
SR 2.75 1.38 1.93 0.1 
MR 2.75 1.38 1.68 0.2 
BR 2.75 1.38 1.58 0.3 

RGA can be a valuable tool in exploring problems involving multiple disks as long as the 
individual disks satisfy the t/AfiM„< 0.2 criterion. 

In an effort to understand the influence of small-scale periodic structure in disk-like 
objects on backscattering, I examined [11] backscattering by a "sectorized" disk formed by 
starting with a homogeneous disk and removing sectors. Specifically, the disk was divided 
into equal angle sectors of angle Aorand alternate sectors were removed. The angle Aar was 
given by 

Aa = — 
2" 

where n is an integer. Figure 5 provides the positions of one layer of dipoles for the resulting 
structures for n = 4 to 7. I will refer to these objects as "pinwheels." If we let s be the arc 
length of the open (or closed) regions at the perimeter of the pinwheel, then s = DjAa 12, 
where A is the diameter of the disk. The values of s for the various cases that I examined {Dit 

= 1.5 Mm) were such that at a wavelength (A) of 400 nm in vacuum (300 run in water), as n 
progresses from 4 to 7, s took on the values A, A/2, AIA, and AJ8 in water. One of the main 
goals of my study was to determine if a relationship exists between s and A where the periodic 
structure becomes important (or unimportant) to the backscattering. 
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n = 5 

n=6 „=7 

Fig. 5. Sectorized disks ("pinwheels") for various values of n used in this study. 

DDA 

Disk Dd- 1 5(lm 

RGA 

itm 0.020 

• - n - 4, t- 0.10 
— n-5. t- 0.05 
• n - 5. t- 0.10 
• n - 5, t - 0.1S 
*-n - 6, t- 0.15 
— 1.10,  t - 0.15 
— 1.10, t- 0.05 

1.10,  t- 0.03 

Fig. 6. Comparison of DDA and RGA backscattering by sectorized disks in Fig. 5. 

The results of the computations of the backscattering cross section, o?,, carried out for 1.5 
u.m pinwheels are provided in Fig. 6 (DDA on the left from Ref. 11, and RGA on the right). 
which displays ah as function of the thickness (0 of the disk divided by the wavelength of the 
light in water (Awater)- Three thicknesses of the disk are used: 0.05, 0.10, and 0.15 (j.m. The 
wavelength Awater covers the range from 200 nm to over 1000 nm. Note the qualitative 
similarity between the DDA and the RGA computations. Both show that the backscattering 
appears to follow a "universal curve" that is close to that for a homogeneous disk with a 
reduced index m = 1.10 rather than 1.20 (labeled 1.10 in the key to the figure); however, as 
the wavelength decreases ah suddenly departs from the universal curve and increases 
dramatically. This was first observed through extensive computations using the DDA; 
however, in this case, the behavior could have been predicted based on the RGA 
computations.  (The departure of Oi, from the universal curve occurs when the maximum arc 
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length of the open or closed regions of the pinwheel exceeds ^aJA.). In Fig. 7 the 
comparisons in Fig. 6 are carried to larger values of t/Xyila, and show that the RGA agrees 
well with the DDA for values of ?//iwater up to, and somewhat beyond the first maximum that 
occurs in ah after the departure from the "universal curve." This maximum is near s/Z^aa = 
V2. For larger values of t/X^tm the RGA still provides the qualitative nature of the variation of 
Ob with ///Iwatcr; however, it no longer quantitatively reproduces the DDA computations. 

In Fig. 8 a more complex geometry - parallel pinwheels - is examined. This is somewhat 
similar to the "fishing reel" model [5] for detached coccoliths, but uses sectorized disks 
(washers) with n = 5 and 6 rather than homogeneous disks and the outside diameter is 1.50 
urn rather than 2.75 urn. Again, the agreement between RGA and DDA is quite good 
throughout the visible, even in a quantitative sense. 

=• 00 

• •* -n-4.t-015.RGA 

—tr— n-4.1-0.15. DDA 

' • -n-5.l-015.RGA 

-O—n-5.1-0 15. DDA 

• -»• -n-6.l-OI5.RGA 

—O—n-M-0.15. DDA 

Fig. 7. Comparison of DDA and RGA backscattering by sectorized disks in Fig. 5. 
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n = 5 (DDA) 
fi\ 

-      A- n = 5(RGA) 

^tK»-_ - • - O - j^- -•—-, 
400       500       600       700       800       900 
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Fig. 8 Comparison of DDA and RGA backscattering by parallel sectorized (n = 5 and 6) 
washers. The individual washers have an outside diameter of 1.50 urn, inside diameter 1 00 
u,m and thickness 0.05 urn. They are separated by a space of 0.30 urn. 
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6. Application: estimate of the influence of E. huxleyi birefringence on backscattering 

As the E. huxleyi coccolith is composed of calcite, one would expect it to be birefringent. 
This is indeed the case. The c-axis (optical axis) of the component parts of the E. huxleyi 
coccolith is radial, i.e., along the "spoke-like" structures [19]. How does this birefringence 
influence the backscattering? Since RGA provides an adequate description of the 
backscattering of homogeneous or structured disk-like objects as long as t/AWaSa < 0.2, which 
is satisfied by the individual coccolith plates throughout the visible, we expect that it would 
apply equally well to a birefringent disk. Thus, we will investigate the possible influence of 
birefringence on E. huxleyi backscattering by comparing the backscattering in the RGA of a 
birefringent and an isotropic disk. Computation of the scattering matrix A for an anisotropic 
disk, for which the optical axis at any point is radial, is sketched out in the Appendix. A 
uniaxial crystal, Calcite has two refractive indices: me for propagation with the electric vector 
parallel to the c-axis; and m0 for propagation with the electric vector perpendicular to the c- 
axis. Letting m, represent the refractive index of the isotropic disk, we take 

P«a _ = 3 rf-P 
m]+2 

and P. 
7o       \»>l + 

-1 

2 

for the polarizabilities a and h (see the Appendix) of the birefringent disk, and 

P.<* = 3 
wij — 1 

mf+2 

for the isotropic disk. Clearly, w^ must depend on m„ and me in some manner, and one of the 
goals of this exercise is to find the combination that provides the best agreement for 
backscattering of the isotropic and the anisotropic cases. If the disk were composed of small 
grains of Calcite in random orientation, one would expect [20] the average refractive index 

Disk: D = 2.75 um, / = 0.05 urn 

600 700 

Fig.   9.   Comparison  of RGA  computations  of backscattering  for  a  randomly-oriented 
birefringent disk and an isotropic disk with m, = (2m„ + m,)/3. 

for unpolarized light to be approximately {2m„ + me)/3. Using tabulated values for the 
refractive indices of Calcite [21] near 500 nm and taking 1.338 for the index of water, we 
have m„ = 1.241,   me = 1.113, and m,• = 1.198 (close to the value 1.20 used in the earlier 
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computations). Comparison of the RGA-computed ah for the radially-anisotropic disk with 
these values of m0 and me with the isotropic disk with index m, = {2m0 + me)/3 is provided in 
Fig. 9. The isotropic disk's backscattering cross section is seen to be somewhat higher than 
the birefringent disk. The two can be brought into agreement by taking m,• = 1.188 = 0.57 m„ 
+ 0.43 me. (For the total scattering cross section, m, = (2m0 + me)/3 provides better 
agreement between the two than w, = 1.188.) This suggests that for the computation of 
backscattering by model coccoliths with the DDA, a zeroth-order account of the birefringence 
can be effected by using m,• = 1.188 rather than 1.198. 

7. Concluding Remarks 

The value of the RGA in obtaining qualitative information regarding backscattering by disk- 
like particles has been demonstrated. The success of the RGA in this case derives from the 
fact that, unlike a spherical particle with the same mass, most of the volume elements of a thin 
disk are far enough away from any given element that their interaction is small, i.e., a 
relatively small amount of the total mass of the particle is close to any one of the volume 
elements. 

I am not advocating the use of the RGA for quantitative computations of o& for disk-like 
particles. Rather, because it is computationally fast compared to the DDA, it can be used to 
explore the backscattering of disk-like models of marine particles for the purpose of either 
excluding models with unacceptable qualitative behavior, or selecting promising models for 
further study using the more time-consuming DDA. 

8. Appendix: scattering by a birefringent disk 

Here we develop the formulas for scattering from a birefringent disk. As our application is to 
the E. huxleyi coccoliths we take the disk to be uniaxial with the optical axis at any point in 
the disk in the radial direction. We develop the anisotropic case first and then reduce these 
formulas to the isotropic case. 

A. Anisotropic case 

Figure Al provides the geometry of the scattering problem. The body-fixed coordinate 
system is cylindrical with radial coordinate p\ the angle r\\ and the coordinate z' normal to 
the axis of the disk. In the integral for A, Eq. (15), the required elements of the polarizability 
matrix (a^., a^, a^, a^, and a^) must be provided in laboratory-fixed reference system and 
depend on the particle's orientation. However, in the body-fixed reference system the 
polarizability matrix assumes a particularly simple form: 

( 

0 

0 

a. 
0 

0 

0 ] fa    0    6\ 
0 = 0   b    0 

«,v) V°    °   bj 
The transformation of this matrix to the laboratory-fixed system is straightforward: 

o = UBasBU, 

where the matrices U and B are related to the Euler angles (ft <j>, y/) and rf (Fig. Al and Fig. 
A2) through 
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Fig. A1. A schematic of scattering by a disk.  The cylindrical coordinate system (p', rj ',z ') is 
fixed with respect to the disk (z' is in the direction of the normal, n). 

Fig. A2. Relationship between the laboratory-fixed coordinate system (x, y. z) and the body- 
fixed system (jt ', y '. z ") or (p \rj '.z '). 0. Q. and y/ are the Euler angles. Because of the 
symmetry of the disk the angle y/can be set to zero. 
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u = 
cos^cos0-cosf?sin^sin^      cos^sin0 + cos#cos^sin^     sin^sinf^ 

-sinycos0-cos#sin0cosy   -sin^sin0 + cos#cos0cosy   cos^sinf? 

sin#sin0 -sin#cos0 cos# 

and 

B = 

cos 77'    sin/;'   0 

-sin77'   cos77'   0 

0 0       1 

Because of the symmetry of the disk, the Euler angle y/ is redundant and may be set to zero. 
The matrix elements of a thus depend on 0, <p, and rj'. 

To carry out the required integrations to find A, we need D = p' + z'< an^ by resolving 
(%    - ic) lTAo components parallel and normal to the disk's surface, we find 

and 
(/r0 - ic) • D = 2*-sin( 0 / 2)[p'cos(jj'- y)sin /? + z'cos /?] 

cos/? = cosf?sin(0/2)-sin#sin0cos(0/2). 

where j'is the angle between the component of ( /f    — K ) parallel to the plane of the disk 

and the x' axis. A typical integral that must be evaluated to find A is then 

1 RZtt 

jj jayv exp{ ;2x-sin(0/2)[//cos(/7'- y)sm fl + z'cos J3] }p'dt]'dp'dz'. 
000 

Explicit relationships for the components of a are: 

1       ,   . 
a^ =—cos~rj[a + b + (a-b)cos20] 

+ 2{-a + b)cosrj's'mr/'cos8cos<ps\n <p 

+ sin2;/t/3sin2r9 + cos2#(/3cos20 + asin20)], 

axy =(a-/j)(cos^cos0sin/7' + cos77'sin<z>) 

x(cos/;'cos0-cosf?sin/7'sin0). 

aa = (tf-6)sin77'sin#(cos7/'cos0-cos#sin77'sin0), 

a^. = -cos27/'[a + /j-(a-/j)cos20] 

- 2{-a + b)cosT]'s'm 77'cos#cos0sin <p 

+ sin277'[6sin2# + cos20(tfcos2 0 + 6sin20)] , 

a   = (a-/3)sin77'sin#(cos77'sin0 + cos#sin?7'cos0), 
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or,, =bcos2rj' + s'm27]\as'\n20 + bcos2$), 

«„=«,.   <*„=#„>   oc„=an 

Thus, for a given orientation of the disk (given f?and 0), all of the required integrals are of the 
form 

i Rllt 

III 
f 2      ' ' cos rj 

cos/7'sin//' 

sin: 77' 

exp{i2/cs'm(Q/ 2)[p' cos(j]' - y)sin ft + z' cos fl^p'drj'dp'dz'. 

Figure A3 provides the required 77' integrals, and this integrates to 

2n 
0 

K//ty,(x/^)+y0(x
/

JR)-i 

£sin(*W2), 
A: 

where 

and 

/c' = 2/rsin(0/2)sin/7- 

k' - 2*rsin(0/2)cos/?- 

cos/? = cos#sin(0/2)-sin#sin<z>cos(0/2). 

The disk orientation enters through the variation of the a;/s with f?and 0as well as through dr* 
and*'. 

The complete formulas for the scattering amplitude matrix and cross sections are 
straightforward to write down, but are too complicated to be informative. Rather, we shall 
only provide results of numerical computations in the text. However, in the case of an 
isotropic disk, the formulas are simple and are provided in the next subsection. 

B. Isotropic case 

When the polarizability of the disk material is isotropic, i.e., a = b, then Oty = aS,,, and the 
scattering amplitude matrix becomes 

I      ° Jjf(exp[i(*0-*)«D]</K 
.0   cos0JJf.J 

_-i£jfa{\ 
<\7t£n 

mde^±{\      °J^.^l(^)2sin(itV2). 
4xe0   [0   cos0J K 

The differential cross section is then 

da_ 

dQ 

/,(*$) sin0fc'f/2)V 

0 j 

2V- 
K'R k't/2   ) 

1 + cos2 0 

Note that the orientation of the disk enters only through the parameters K' and 
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*'. 

'«.(*) 
1   2" 

"•Z- J fm (*) exp{i'acos x}dx. with fnm (x) = ( 
2/r % 

cosx)" (sin AT)" 

n m •*«m 

0 0 M$ 
1 0 0 

0 1 0 

1 1 0 

2 0 Ji(d)/a-Jj(c^ = Ji'(di 

0 2 J\{ot)la 

\xJa{x)dx-xJx{x) 
\x J2(x)dx = 2J0(x)- x ./,(*) 

\Jx(x)dx = \-J0(x) 

\xJ[{x)dx = x Jt(x) + J0(x)-1 

Fig. A3. The required integrals for the evaluation of the matrix A. TheXs are Bessel functions. 
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